
SimPy Documentation
Versão 3.0.10

Team SimPy

03/06/2018

Contents

1 Sumário 1

2 SimPy em 10 Minutos 3
2.1 Instalação . 3
2.2 Conceitos Básicos . 4
2.3 Esperando por um Processo . 5
2.4 Interrompendo a execução de outro Processo . 6
2.5 E agora? . 7
2.6 Recursos Compartilhados . 7
2.7 Como proceder . 9

3 Topical Guides 10
3.1 Conceitos básicos do SimPy . 10
3.2 Environments . 11
3.3 Events . 14
3.4 Process Interaction . 18
3.5 Shared Resources . 21
3.6 Real-time simulations . 29
3.7 Monitorando . 30
3.8 Time and Scheduling . 35
3.9 Porting from SimPy 2 to 3 . 36

4 Examples 41
4.1 Condition events . 41
4.2 Interrupts . 41
4.3 Monitoring . 41
4.4 Resources: Container . 41
4.5 Resources: Preemptive Resource . 41
4.6 Resources: Resource . 41
4.7 Resources: Store . 42
4.8 Shared events . 42
4.9 Waiting for other processes . 42
4.10 All examples . 42

5 API Reference 61
5.1 simpy . 61
5.2 simpy.core — SimPy’s core components . 62
5.3 simpy.exceptions — Exception types used by SimPy . 64

i

5.4 simpy.events — Core event types . 64
5.5 simpy.resources — Shared resource primitives . 72
5.6 simpy.rt — Real-time simulation . 79
5.7 simpy.util — Utility functions for SimPy . 80

6 About SimPy 81
6.1 SimPy History & Change Log . 81
6.2 Acknowledgments . 91
6.3 Ports and comparable libraries . 91
6.4 Defense of Design . 91
6.5 Release Process . 94
6.6 License . 97

7 Indices and tables 98

Índice de Módulos do Python 99

ii

CHAPTER 1

Sumário

Simpy é um framework baseado em processos com simulação de eventos discretos utilizando as bibliotecas padrão do
Python.

Os processos em Simpy são definidos através de funções generator e podem, por exemplo, ser utilizadas para definir
componentes como compradores, veículos ou agentes. Simpy também disponibiliza diversos tipos de recursos com-
partilhados para utilização de recursos propensos a congestionamento (como servidores, caixas e túneis)

As simulações podem ser realizadas de modo “mais rápido possível”, em tempo real (de acordo com o desenrolar do
tempo) ou manualmente passo a passo por cada evento.

Though it is theoretically possible to do continuous simulations with SimPy, it has no features that help you with that.
On the other hand, SimPy is overkill for simulations with a fixed step size where your processes don’t interact with
each other or with shared resources.

A short example simulating two clocks ticking in different time intervals looks like this:

>>> import simpy
>>>
>>> def clock(env, name, tick):
... while True:
... print(name, env.now)
... yield env.timeout(tick)
...
>>> env = simpy.Environment()
>>> env.process(clock(env, 'fast', 0.5))
<Process(clock) object at 0x...>
>>> env.process(clock(env, 'slow', 1))
<Process(clock) object at 0x...>
>>> env.run(until=2)
fast 0
slow 0
fast 0.5
slow 1
fast 1.0
fast 1.5

A documentação contém um tutorial, diversos guias explicando os conceitos chave, uma boa gama de exemplos e a
documentação da API.

SimPy is released under the MIT License. Simulation model developers are encouraged to share their SimPy modeling
techniques with the SimPy community. Please post a message to the SimPy mailing list.

There is an introductory talk that explains SimPy’s concepts and provides some examples: watch the video or get the
slides.

1

http://docs.python.org/3/glossary.html#term-generator
https://groups.google.com/forum/#!forum/python-simpy
https://www.youtube.com/watch?v=Bk91DoAEcjY
http://stefan.sofa-rockers.org/downloads/simpy-ep14.pdf
http://stefan.sofa-rockers.org/downloads/simpy-ep14.pdf

SimPy Documentation, Versão 3.0.10

SimPy has also been reimplemented in other programming languages. See the list of ports for more details.

2

CHAPTER 2

SimPy em 10 Minutos

Nesta seção você aprenderá o básico sobre Simpy em apenas alguns minutos. Ao término, estarás apto a implementar
uma simulação simples usando Simpy e você será capaz de decidir se o Simpy é o que necessita para seu projeto.
Também lhe daremos algumas dicas de como implementar simulações mais complexas.

Instalação

SimPy é implementado sem necessidade de dependências ou recursos além do próprio Python. Simpy roda em Python
2 (>= 2.7) e Python 3 (>= 3.2). PyPy também é suportado. Se já tiver instalado o pip , só precisa digitar

$ pip install simpy

e pronto.

Instalando a partir do código fonte

Uma alternativa a instalação é fazer o download do SimPy e instalá-lo manualmente. Descompacte o arquivo, abra um
terminal no diretório onde o Simpy foi descompactado e digite:

$ python setup.py install

Nesse modelo de instalação ainda é possível executar os testes do Simpy para verificar se tudo está funcionando de
acordo. Para isto você precisa do pytest . Execute o comando a seguir diretamente do diretório onde está o código
fonte do Simpy:

$ py.test --pyargs simpy

Atualizando o Simpy 2 para versões mais recentes

Se você já está familiarizado com o Simpy 2, por favor leia o Guia Porting from SimPy 2 to 3.

O que vem a seguir?

Após a instalação do Simpy, você provavelmente deseja simular algo. Na próxima seção você conhecerá os conceitos
básicos do Simpy.

3

http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/SimPy/
http://pytest.org

SimPy Documentation, Versão 3.0.10

Conceitos Básicos

Simpy é uma biblioteca de simulação de eventos discretos. O comportamento de componentes (como veículos,
clientes ou mensagens) é modelado como processes. Todos os processes/processos estão em environment/ambiente.
Eles interagem com o ambiente e um com o outro atráves de eventos.

Os processos são definidos através de simples Python generators. Você pode chamar as funções de processos ou
métodos dos processos, da mesma maneira que chama uma função normal ou um método de uma classe. Durante seu
ciclo de vida, eles criam eventos e os executa de acordo com a ordem que deverão ser acionados.

Quando um processo tem o retorno de um evento, o processo fica em modo suspended/suspenso. Simpy re-
sumes/continua a execução do processo, quando o evento ocorre (é dito que o evento é triggered/acionado). Diversos
processos podem aguardar pelo mesmo evento. Simpy resume/aciona todos os eventos na mesma ordem em que foram
retornados.

Eventos do tipo Timeout, são acionados após um determinado tempo (da simulação). Essa funcionalidade per-
mite que um processo fique aguardando apenas por um tempo definido. Um Timeout e todos os outros even-
tos podem se criados com a execução de um método do tipo Environment no qual o processo se encontra
(Environment.timeout() por exemplo).

Primeiro Processo

Nosso primeiro exemplo será um processo car. O car/carro alternará entre ser dirigido(drive) e estar estacionado
(park) por um tempo. Quando ele estiver em movimento (ou estacionando), será impresso o tempo atual da simulação.
Ou seja, sempre que o estado do processo mudar.

Então vamos começar:

>>> def car(env):
... while True:
... print('Estacionando a %d' % env.now)
... parking_duration = 5
... yield env.timeout(parking_duration)
...
... print('Dirigindo em %d' % env.now)
... trip_duration = 2
... yield env.timeout(trip_duration)

O processo car requer uma referencia para a classe Environment (env) de modo ordenado para a criação/definição
dos novos eventos relacionados a ele. O comportamento do car é descrito em um loop infinto. Lembrando que está
função é um generator. Apesar dele nunca terminar (loop infinito), ele entrega o controle do fluxo das ações sempre
que encontra a declaração yield. Uma vez que o evento(yield) é finalmente acionado(triggered) (ou ocorre), a
simulação continua a execução do procedimento.

Como dito antes, nosso carro/car alterna entre estar estacionando/parking e estar em movimento/driving. É anun-
ciado seu novo status imprimindo uma mensagem e o tempo atual da simulação (retornado pela propriedade
Environment.now). Então é chamada a função Environment.timeout() para criar um evento do tipo
Timeout. Este evento determina o ponto exato em que o carro deixou de estacionar/parking ou de estar em movi-
mento/driving, respectivamente. Através do evento ‘yielding’, é informado para a simulação que será aguardada a
mudança de estado.

Já que o comportamento do nosso carro foi definido/modelado, vamos criar uma instância dele e ver como ele se
comporta:

>>> import simpy
>>> env = simpy.Environment()
>>> env.process(car(env))

2.2. Conceitos Básicos 4

http://docs.python.org/3/reference/expressions.html#yieldexpr

SimPy Documentation, Versão 3.0.10

<Process(car) object at 0x...>
>>> env.run(until=15)
Estacionado em 0
Dirigindo em 5
Estacionando em 7
Dirigindo em 12
Estacionando em 14

A primeira coisa que fazemos é criar uma instância da classe Environment. Essa instância (no caso env) é então
passada para o processo car em car(env). Que por sua vez cria um process generator que para ser iniciado tem de
ser declarado na instância env, para isso se usa o método Environment.process().

Observer, que neste momento, nada do código/procedimento definido em nosso processo está sendo executado ainda.
Sua execução é agendada de acordo com o tempo da simulação

O Process retornado por process() pode ser usado para interagir com o processo (na próxima seção veremos
mais sobre isso).

E finalmente a simulação começa quando é executado run() e definimos quando será o término da simulação.

E agora?

Já que você se familiarizou com a terminologia utilizada no Simpy e seus conceitos básicos. Na próxima seção, vamos
entender como funciona a interação do processo.

A instância de Process retornada por Environment.process() pode ser usada para interagir com o processo.
Environment.process() can be utilized for process interactions. Dois exemplos mais comuns de uso são para
aguardar o término de algum outro processo e interromper a execução de outro processo enquanto se espera por um
evento.

Esperando por um Processo

Como mencionado, um Process Simpy pode ser usado como um evento (tecnicamente falando, um processo é um
evento). Se você marcá-lo com yield, ele continua uma vez que o processo tenha concluído. Imagine a simulação
de uma lava a jato onde os carros entram para a limpeza e aguardam que o processo de lavagem seja concluído. Ou
uma simulação de um aeroporto onde os passageiros tem de esperar até que os procedimentos de segurança sejam
concluídos.

Vamos assumir que o carro do nosso exemplo anterior, vire do nada um carro elétrico. Carros elétricos geralmente
levam muito tempo carregando suas baterias após uma viagem. Eles teriam de esperar até que suas baterias estivessem
carregadas para que continuassem sua viagem.

Poderiamos alterar o modelo adicionando ao carro o processo charge(). Antes, é preciso refatorar nossa classe
carro para que os processos tenham dois métodos: run() (o qual antes era a função car()) e charge().

O processo run é iniciado automaticamente quando Car é instanciado. E um processo charge é chamado
toda vez que o carro começa a estacionar. Ao se solicitar uma instância de Process retornado pelo método
Environment.process(), o processo run fica aguardando o término do evento:

>>> class Car(object):
... def __init__(self, env):
... self.env = env
... # Start the run process everytime an instance is created.
... self.action = env.process(self.run())
...
... def run(self):

2.3. Esperando por um Processo 5

SimPy Documentation, Versão 3.0.10

... while True:

... print('Estacionando e carregando em %d' % self.env.now)

... charge_duration = 5

... # We yield the process that process() returns

... # to wait for it to finish

... yield self.env.process(self.charge(charge_duration))

...

... # Ao termino do carregamento então podemos

... # voltar a dirigir.

... print('Dirigindo em %d' % self.env.now)

... trip_duration = 2

... yield self.env.timeout(trip_duration)

...

... def charge(self, duration):

... yield self.env.timeout(duration)

Iniciando a simulação novamente: Nós criamos um ambiente/environment, um (ou mais) carros e finalmente
chamamos o método run().

>>> import simpy
>>> env = simpy.Environment()
>>> car = Car(env)
>>> env.run(until=15)
Estacionando e carregando em 0
Dirigindo em 5
Estacionando e carregando em 7
Dirigindo em 12
Estacionando e carregando em 14

Interrompendo a execução de outro Processo

Digamos que você não quer aguardar até que o carro elétrico esteja completamente carregado e sim deseja parar o
processo de carga para começar a dirigir.

SimPy permite que você interrompa a execução de um processo chamando o método interrupt()

>>> def driver(env, car):
... yield env.timeout(3)
... car.action.interrupt()

O processo driver tem uma referência para processo action do carro. Depois de esperar por 3 passos da simu-
lação, ele interrompe aquele processo.

As interrupções são aplicadas nos processos como exceções Interrupt que podem (ou devem) ser tratadas pelo
processo que foi interrompido. O processo por sua vez pode então decidir o que fazer em seguida (por exemplo:
continuar a esperar o evento que o originou ou iniciar um novo evento):

>>> class Car(object):
... def __init__(self, env):
... self.env = env
... self.action = env.process(self.run())
...
... def run(self):
... while True:
... print('Estacionando e carregando em %d' % self.env.now)
... charge_duration = 5
... # Caso seja interrompido enquanto carrega a bateria

2.4. Interrompendo a execução de outro Processo 6

SimPy Documentation, Versão 3.0.10

... try:

... yield self.env.process(self.charge(charge_duration))

... except simpy.Interrupt:

... # Ao receber a solicitacao de interrupcao do processo

... # de carga, nos paramos de carregr e mudamos o estado

... # para "dirigindo"/"driving"

... print('Interrompido o processo. Espero que a bateria tenha carga suficiente ...')

... print('Dirigindo em %d' % self.env.now)

... trip_duration = 2

... yield self.env.timeout(trip_duration)

...

... def charge(self, duration):

... yield self.env.timeout(duration)

Se compararmos as mensagens de saída da simulação anterior com a atual, veremos que o carro agora começa a ser
dirigido em 3 ao invés de 5:

>>> env = simpy.Environment()
>>> car = Car(env)
>>> env.process(driver(env, car))
<Process(driver) object at 0x...>
>>> env.run(until=15)
Estacionando e carregando em 0
Interrompido o processo. Espero que a bateria tenha carga suficiente ...
Dirigindo em 3
Estacionando e carregando em 5
Dirigindo em 10
Estacionando e carregando em 12

E agora?

Nós demonstramos apenas dois métodos simples para interação com os processos—esperando por um processo e
interrompendo um processo. Dê uma olhada em Topical Guides ou documentação da API Process para maiores
detalhes.

Na próxima seção vamos enteder o básico da utilização de recursos compartilhados.

Recursos Compartilhados

Simpy oferece 3 tipos de resources que o ajudam a modelar suas simulações, onde múltiplos processos podem
usar um recurso com capacidade limitada (ex., carros em um posto com uma limitada quantidade de bombas) ou o
clássico problema produtor-consumidor.

Nesta seção, faremos uma breve introdução da classe Resource do Simpy.

Uso básico da classe Resource

Faremos uma modificação simples no nosso processo do carro elétrico car que foi criado na última seção.

O carro agora irá para um estação de carga da bateria(bcs) e solicitar 1 dos 2 pontos de carga (charging spots). Se
todos os pontos estiverem em uso, ele aguarda a liberação de um deles. Só então, obviamente, deve começar a carregar
a bateria e assim deixar a estação:

2.5. E agora? 7

SimPy Documentation, Versão 3.0.10

>>> def car(env, name, bcs, driving_time, charge_duration):
... # Simular seguir para a BCS
... yield env.timeout(driving_time)
...
... # Solicita um ponto de carga
... print('%s saindo em %d' % (name, env.now))
... with bcs.request() as req:
... yield req
...
... # Carrega a bateria
... print('%s carregando em %s' % (name, env.now))
... yield env.timeout(charge_duration)
... print('%s deixando a bcs em %s' % (name, env.now))

O método de Resource request() gera um evento que permite que você aguarde até que o recurso fique disponível
novamente. Se você retornar, você “alocará” o recurso até que você o libere/release.

Caso utilize o recurso usando a declaração with como demonstrado a seguir, o recurso é autimaticamente liberado.
Porém se você chamar o request() sem declarar with, você toma pra si a responsabilidade de chamar o método
release() quando você terminar de usar o recurso.

Quando liberar um recurso, o processo que estava aguardando por ele é continuado e passa a utilizar o recurso. A
ordenação padrão de Resource na fila de espera segue o modelo de FIFO (first in—first out).

Um recurso precisa referenciar a classe Environment e ter uma capacidade/capacity determinada quando criado:

>>> import simpy
>>> env = simpy.Environment()
>>> bcs = simpy.Resource(env, capacity=2)

Tendo entendido essa primeira parte, podemos então criar os processos car e também informar uma referência para
nosso resource/recurso como parâmetros adicionais:

>>> for i in range(4):
... env.process(car(env, 'Car %d' % i, bcs, i*2, 5))
<Process(car) object at 0x...>
<Process(car) object at 0x...>
<Process(car) object at 0x...>
<Process(car) object at 0x...>

Então, finalmente podemos iniciar a simulação. Desde que os processos car Finally, we can start the simulation. Since
the car processes all terminate on their own in this simulation, we don’t need to specify an until time—the simulation
will automatically stop when there are no more events left:

>>> env.run()
Car 0 arriving at 0
Car 0 starting to charge at 0
Car 1 arriving at 2
Car 1 starting to charge at 2
Car 2 arriving at 4
Car 0 leaving the bcs at 5
Car 2 starting to charge at 5
Car 3 arriving at 6
Car 1 leaving the bcs at 7
Car 3 starting to charge at 7
Car 2 leaving the bcs at 10
Car 3 leaving the bcs at 12

Note that the first two cars can start charging immediately after they arrive at the BCS, while cars 2 an 3 have to wait.

2.6. Recursos Compartilhados 8

SimPy Documentation, Versão 3.0.10

What’s Next

You should now be familiar with SimPy’s basic concepts. The next section shows you how you can proceed with using
SimPy from here on.

Como proceder

Caso ainda esteja em dúvida se o SimPy atende suas necessidade ou se pretende ver mais recursos em uso, você deveria
analisar os diversos exemplos que nós disponibilizamos.

Se está a procura de uma descrição mais detalhada de um determinado aspecto ou recurso do Simpy, a seção Topical
Guides pode lhe ajudar.

Finalmente, existe a Documentação da API que descreve todas as funções e classes em detalhes.

2.7. Como proceder 9

CHAPTER 3

Topical Guides

Esta seção abrange diversos aspectos do SimPy de forma mais aprofundada. Nela se assume que você tem um en-
tendimento básico das capacidades do SimPy e que tem ideia do que está procurando.

Conceitos básicos do SimPy

Este guia descreve os conceitos básicos do SimPy: Como funciona? O que são processos, eventos e o ambiente? O
que pode ser feito com ele?

Como o SimPy funciona

Se você olhar melhor o SimPy, verá que ele é só um executor de eventos assícronos. Você gera eventos e agenda eles
para que sejam executados em um dado momento da simulação. Os Eventos são ordenados por prioridade, instante da
simulação e um id incremental para cada evento registrado. Um evento também tem a uma lista de funções de retorno,
os quais são executados quando o evento é acionado e processado em um loop. Os eventos podem retornar um valor.

The components involved in this are the Environment, events and the process functions that you write.

Process functions implement your simulation model, that is, they define the behavior of your simulation. They are
plain Python generator functions that yield instances of Event.

The environment stores these events in its event list and keeps track of the current simulation time.

If a process function yields an event, SimPy adds the process to the event’s callbacks and suspends the process until
the event is triggered and processed. When a process waiting for an event is resumed, it will also receive the event’s
value.

Here is a very simple example that illustrates all this; the code is more verbose than it needs to be to make things extra
clear. You find a compact version of it at the end of this section:

>>> import simpy
>>>
>>> def example(env):
... event = simpy.events.Timeout(env, delay=1, value=42)
... value = yield event
... print('now=%d, value=%d' % (env.now, value))
>>>
>>> env = simpy.Environment()
>>> example_gen = example(env)
>>> p = simpy.events.Process(env, example_gen)
>>>

10

SimPy Documentation, Versão 3.0.10

>>> env.run()
now=1, value=42

The example() process function above first creates a Timeout event. It passes the environment, a delay, and a
value to it. The Timeout schedules itself at now + delay (that’s why the environment is required); other event types
usually schedule themselves at the current simulation time.

The process function then yields the event and thus gets suspended. It is resumed, when SimPy processes the Timeout
event. The process function also receives the event’s value (42) – this is, however, optional, so yield event would
have been okay if the you were not interested in the value or if the event had no value at all.

Finally, the process function prints the current simulation time (that is accessible via the environment’s now attribute)
and the Timeout’s value.

If all required process functions are defined, you can instantiate all objects for your simulation. In most cases, you
start by creating an instance of Environment, because you’ll need to pass it around a lot when creating everything
else.

Starting a process function involves two things:

1. You have to call the process function to create a generator object. (This will not execute any code of that function
yet. Please read The Python yield keyword explained, to understand why this is the case.)

2. You then create an instance of Process and pass the environment and the generator object to it. This will
schedule an Initialize event at the current simulation time which starts the execution of the process func-
tion. The process instance is also an event that is triggered when the process function returns. The guide to
events explains why this is handy.

Finally, you can start SimPy’s event loop. By default, it will run as long as there are events in the event list, but you
can also let it stop earlier by providing an until argument (see Simulation control).

The following guides describe the environment and its interactions with events and process functions in more detail.

“Best practice” version of the example above

>>> import simpy
>>>
>>> def example(env):
... value = yield env.timeout(1, value=42)
... print('now=%d, value=%d' % (env.now, value))
>>>
>>> env = simpy.Environment()
>>> p = env.process(example(env))
>>> env.run()
now=1, value=42

Environments

A simulation environment manages the simulation time as well as the scheduling and processing of events. It also
provides means to step through or execute the simulation.

The base class for all environments is BaseEnvironment. “Normal” simulations usually use its subclass
Environment. For real-time simulations, SimPy provides a RealtimeEnvironment (more on that in Real-
time simulations).

3.2. Environments 11

http://stackoverflow.com/questions/231767/the-python-yield-keyword-explained/231855#231855

SimPy Documentation, Versão 3.0.10

Simulation control

SimPy is very flexible in terms of simulation execution. You can run your simulation until there are no more events,
until a certain simulation time is reached, or until a certain event is triggered. You can also step through the simulation
event by event. Furthermore, you can mix these things as you like.

For example, you could run your simulation until an interesting event occurs. You could then step through the simu-
lation event by event for a while; and finally run the simulation until there are no more events left and your processes
have all terminated.

The most important method here is Environment.run():

• If you call it without any argument (env.run()), it steps through the simulation until there are no more events
left.

Aviso: If your processes run forever (while True: yield env.timeout(1)), this method will
never terminate (unless you kill your script by e.g., pressing Ctrl-C).

• In most cases it is advisable to stop your simulation when it reaches a certain simulation time. Therefore, you
can pass the desired time via the until parameter, e.g.: env.run(until=10).

The simulation will then stop when the internal clock reaches 10 but will not process any events scheduled for
time 10. This is similar to a new environment where the clock is 0 but (obviously) no events have yet been
processed.

If you want to integrate your simulation in a GUI and want to draw a process bar, you can repeatedly call this
function with increasing until values and update your progress bar after each call:

for i in range(100):
env.run(until=i)
progressbar.update(i)

• Instead of passing a number to run(), you can also pass any event to it. run() will then return when the event
has been processed.

Assuming that the current time is 0, env.run(until=env.timeout(5)) is equivalent to
env.run(until=5).

You can also pass other types of events (remember, that a Process is an event, too):

>>> import simpy
>>>
>>> def my_proc(env):
... yield env.timeout(1)
... return 'Monty Python’s Flying Circus'
>>>
>>> env = simpy.Environment()
>>> proc = env.process(my_proc(env))
>>> env.run(until=proc)
'Monty Python’s Flying Circus'

To step through the simulation event by event, the environment offers peek() and step().

peek() returns the time of the next scheduled event or infinity (float(’inf’)) if no future events are scheduled.

step() processes the next scheduled event. It raises an EmptySchedule exception if no event is available.

In a typical use case, you use these methods in a loop like:

3.2. Environments 12

SimPy Documentation, Versão 3.0.10

until = 10
while env.peek() < until:

env.step()

State access

The environment allows you to get the current simulation time via the Environment.now property. The simulation
time is a number without unit and is increased via Timeout events.

By default, now starts at 0, but you can pass an initial_time to the Environment to use something else.

Nota: Although the simulation time is technically unitless, you can pretend that it is, for example, in seconds and use
it like a timestamp returned by time.time() to calculate a date or the day of the week.

The property Environment.active_process is comparable to os.getpid() and is either None or pointing
at the currently active Process. A process is active when its process function is being executed. It becomes inactive
(or suspended) when it yields an event.

Thus, it only makes sense to access this property from within a process function or a function that is called by your
process function:

>>> def subfunc(env):
... print(env.active_process) # will print "p1"
>>>
>>> def my_proc(env):
... while True:
... print(env.active_process) # will print "p1"
... subfunc(env)
... yield env.timeout(1)
>>>
>>> env = simpy.Environment()
>>> p1 = env.process(my_proc(env))
>>> env.active_process # None
>>> env.step()
<Process(my_proc) object at 0x...>
<Process(my_proc) object at 0x...>
>>> env.active_process # None

An exemplary use case for this is the resource system: If a process function calls request() to request a resource,
the resource determines the requesting process via env.active_process. Take a look at the code to see how we
do this :-).

Event creation

To create events, you normally have to import simpy.events, instantiate the event class and pass a reference to the
environment to it. To reduce the amount of typing, the Environment provides some shortcuts for event creation.
For example, Environment.event() is equivalent to simpy.events.Event(env).

Other shortcuts are:

• Environment.process()

• Environment.timeout()

• Environment.all_of()

3.2. Environments 13

http://docs.python.org/3/library/time.html#time.time
http://docs.python.org/3/library/os.html#os.getpid
https://bitbucket.org/simpy/simpy/src/3.0.2/simpy/resources/base.py#cl-35

SimPy Documentation, Versão 3.0.10

• Environment.any_of()

More details on what the events do can be found in the guide to events.

Miscellaneous

Since Python 3.3, a generator function can have a return value:

def my_proc(env):
yield env.timeout(1)
return 42

In SimPy, this can be used to provide return values for processes that can be used by other processes:

def other_proc(env):
ret_val = yield env.process(my_proc(env))
assert ret_val == 42

Internally, Python passes the return value as parameter to the StopIteration exception that it raises when
a generator is exhausted. So in Python 2.7 and 3.2 you could replace the return 42 with a raise
StopIteration(42) to achieve the same result.

To keep your code more readable, the environment provides the method exit() to do exactly this:

def my_proc(env):
yield env.timeout(1)
env.exit(42) # Py2 equivalent to "return 42"

Events

SimPy includes an extensive set of event types for various purposes. All of them inherit simpy.events.Event.
The listing below shows the hierarchy of events built into SimPy:

events.Event
|
+-- events.Timeout
|
+-- events.Initialize
|
+-- events.Process
|
+-- events.Condition
| |
| +-- events.AllOf
| |
| +-- events.AnyOf
.
.
.

This is the set of basic events. Events are extensible and resources, for example, define additional events. In this guide,
we’ll focus on the events in the simpy.events module. The guide to resources describes the various resource
events.

3.3. Events 14

http://docs.python.org/3/library/exceptions.html#StopIteration

SimPy Documentation, Versão 3.0.10

Event basics

SimPy events are very similar – if not identical — to deferreds, futures or promises. Instances of the class Event are
used to describe any kind of events. Events can be in one of the following states. An event

• might happen (not triggered),

• is going to happen (triggered) or

• has happened (processed).

They traverse these states exactly once in that order. Events are also tightly bound to time and time causes events to
advance their state.

Initially, events are not triggered and just objects in memory.

If an event gets triggered, it is scheduled at a given time and inserted into SimPy’s event queue. The property
Event.triggered becomes True.

As long as the event is not processed, you can add callbacks to an event. Callbacks are callables that accept an event
as parameter and are stored in the Event.callbacks list.

An event becomes processed when SimPy pops it from the event queue and calls all of its callbacks. It is now no
longer possible to add callbacks. The property Event.processed becomes True.

Events also have a value. The value can be set before or when the event is triggered and can be retrieved via
Event.value or, within a process, by yielding the event (value = yield event).

Adding callbacks to an event

“What? Callbacks? I’ve never seen no callbacks!”, you might think if you have worked your way through the tutorial.

That’s on purpose. The most common way to add a callback to an event is yielding it from your process function
(yield event). This will add the process’ _resume() method as a callback. That’s how your process gets resumed
when it yielded an event.

However, you can add any callable object (function) to the list of callbacks as long as it accepts an event instance as
its single parameter:

>>> import simpy
>>>
>>> def my_callback(event):
... print('Called back from', event)
...
>>> env = simpy.Environment()
>>> event = env.event()
>>> event.callbacks.append(my_callback)
>>> event.callbacks
[<function my_callback at 0x...>]

If an event has been processed, all of its Event.callbacks have been executed and the attribute is set to None.
This is to prevent you from adding more callbacks – these would of course never get called because the event has
already happened.

Processes are smart about this, though. If you yield a processed event, _resume() will immediately resume your process
with the value of the event (because there is nothing to wait for).

3.3. Events 15

SimPy Documentation, Versão 3.0.10

Triggering events

When events are triggered, they can either succeed or fail. For example, if an event is to be triggered at the end of a
computation and everything works out fine, the event will succeed. If an exceptions occurs during that computation,
the event will fail.

To trigger an event and mark it as successful, you can use Event.succeed(value=None). You can optionally
pass a value to it (e.g., the results of a computation).

To trigger an event and mark it as failed, call Event.fail(exception) and pass an Exception instance to it
(e.g., the exception you caught during your failed computation).

There is also a generic way to trigger an event: Event.trigger(event). This will take the value and outcome
(success or failure) of the event passed to it.

All three methods return the event instance they are bound to. This allows you to do things like yield
Event(env).succeed().

Example usages for Event

The simple mechanics outlined above provide a great flexibility in the way events (even the basic Event) can be used.

One example for this is that events can be shared. They can be created by a process or outside of the context of a
process. They can be passed to other processes and chained:

>>> class School:
... def __init__(self, env):
... self.env = env
... self.class_ends = env.event()
... self.pupil_procs = [env.process(self.pupil()) for i in range(3)]
... self.bell_proc = env.process(self.bell())
...
... def bell(self):
... for i in range(2):
... yield self.env.timeout(45)
... self.class_ends.succeed()
... self.class_ends = self.env.event()
... print()
...
... def pupil(self):
... for i in range(2):
... print(' \o/', end='')
... yield self.class_ends
...
>>> school = School(env)
>>> env.run()
\o/ \o/ \o/
\o/ \o/ \o/

This can also be used like the passivate / reactivate known from SimPy 2. The pupils passivate when class begins and
are reactivated when the bell rings.

Let time pass by: the Timeout

To actually let time pass in a simulation, there is the timeout event. A timeout has two parameters: a delay and an
optional value: Timeout(delay, value=None). It triggers itself during its creation and schedules itself at now

3.3. Events 16

http://docs.python.org/3/library/exceptions.html#Exception

SimPy Documentation, Versão 3.0.10

+ delay. Thus, the succeed() and fail() methods cannot be called again and you have to pass the event value
to it when you create the timeout.

The delay can be any kind of number, usually an int or float as long as it supports comparison and addition.

Processes are events, too

SimPy processes (as created by Process or env.process()) have the nice property of being events, too.

That means, that a process can yield another process. It will then be resumed when the other process ends. The event’s
value will be the return value of that process:

>>> def sub(env):
... yield env.timeout(1)
... return 23
...
>>> def parent(env):
... ret = yield env.process(sub(env))
... return ret
...
>>> env.run(env.process(parent(env)))
23

The example above will only work in Python >= 3.3. As a workaround for older Python versions, you can use
env.exit(23) with the same effect.

When a process is created, it schedules an Initialize event which will start the execution of the process when
triggered. You usually won’t have to deal with this type of event.

If you don’t want a process to start immediately but after a certain delay, you can use
simpy.util.start_delayed(). This method returns a helper process that uses a timeout before actu-
ally starting a process.

The example from above, but with a delayed start of sub():

>>> from simpy.util import start_delayed
>>>
>>> def sub(env):
... yield env.timeout(1)
... return 23
...
>>> def parent(env):
... start = env.now
... sub_proc = yield start_delayed(env, sub(env), delay=3)
... assert env.now - start == 3
...
... ret = yield sub_proc
... return ret
...
>>> env.run(env.process(parent(env)))
23

Waiting for multiple events at once

Sometimes, you want to wait for more than one event at the same time. For example, you may want to wait for a
resource, but not for an unlimited amount of time. Or you may want to wait until all a set of events has happened.

SimPy therefore offers the AnyOf and AllOf events which both are a Condition event.

3.3. Events 17

SimPy Documentation, Versão 3.0.10

Both take a list of events as an argument and are triggered if at least one or all of them of them are triggered.

>>> from simpy.events import AnyOf, AllOf, Event
>>> events = [Event(env) for i in range(3)]
>>> a = AnyOf(env, events) # Triggers if at least one of "events" is triggered.
>>> b = AllOf(env, events) # Triggers if all each of "events" is triggered.

The value of a condition event is an ordered dictionary with an entry for every triggered event. In the case of AllOf,
the size of that dictionary will always be the same as the length of the event list. The value dict of AnyOf will have at
least one entry. In both cases, the event instances are used as keys and the event values will be the values.

As a shorthand for AllOf and AnyOf, you can also use the logical operators & (and) and | (or):

>>> def test_condition(env):
... t1, t2 = env.timeout(1, value='spam'), env.timeout(2, value='eggs')
... ret = yield t1 | t2
... assert ret == {t1: 'spam'}
...
... t1, t2 = env.timeout(1, value='spam'), env.timeout(2, value='eggs')
... ret = yield t1 & t2
... assert ret == {t1: 'spam', t2: 'eggs'}
...
... # You can also concatenate & and |
... e1, e2, e3 = [env.timeout(i) for i in range(3)]
... yield (e1 | e2) & e3
... assert all(e.processed for e in [e1, e2, e3])
...
>>> proc = env.process(test_condition(env))
>>> env.run()

The order of condition results is identical to the order in which the condition events were specified. This allows
the following idiom for conveniently fetching the values of multiple events specified in an and condition (including
AllOf):

>>> def fetch_values_of_multiple_events(env):
... t1, t2 = env.timeout(1, value='spam'), env.timeout(2, value='eggs')
... r1, r2 = (yield t1 & t2).values()
... assert r1 == 'spam' and r2 == 'eggs'
...
>>> proc = env.process(fetch_values_of_multiple_events(env))
>>> env.run()

Process Interaction

Discrete event simulation is only made interesting by interactions between processes.

So this guide is about:

• Sleep until woken up (passivate/reactivate)

• Waiting for another process to terminate

• Interrupting another process

The first two items were already covered in the Events guide, but we’ll also include them here for the sake of com-
pleteness.

Another possibility for processes to interact are resources. They are discussed in a separate guide.

3.4. Process Interaction 18

SimPy Documentation, Versão 3.0.10

Sleep until woken up

Imagine you want to model an electric vehicle with an intelligent battery-charging controller. While the vehicle is
driving, the controller can be passive but needs to be reactivate once the vehicle is connected to the power grid in order
to charge the battery.

In SimPy 2, this pattern was known as passivate / reactivate. In SimPy 3, you can accomplish that with a simple,
shared Event:

>>> from random import seed, randint
>>> seed(23)
>>>
>>> import simpy
>>>
>>> class EV:
... def __init__(self, env):
... self.env = env
... self.drive_proc = env.process(self.drive(env))
... self.bat_ctrl_proc = env.process(self.bat_ctrl(env))
... self.bat_ctrl_reactivate = env.event()
...
... def drive(self, env):
... while True:
... # Drive for 20-40 min
... yield env.timeout(randint(20, 40))
...
... # Park for 1-6 hours
... print('Start parking at', env.now)
... self.bat_ctrl_reactivate.succeed() # "reactivate"
... self.bat_ctrl_reactivate = env.event()
... yield env.timeout(randint(60, 360))
... print('Stop parking at', env.now)
...
... def bat_ctrl(self, env):
... while True:
... print('Bat. ctrl. passivating at', env.now)
... yield self.bat_ctrl_reactivate # "passivate"
... print('Bat. ctrl. reactivated at', env.now)
...
... # Intelligent charging behavior here ...
... yield env.timeout(randint(30, 90))
...
>>> env = simpy.Environment()
>>> ev = EV(env)
>>> env.run(until=150)
Bat. ctrl. passivating at 0
Start parking at 29
Bat. ctrl. reactivated at 29
Bat. ctrl. passivating at 60
Stop parking at 131

Since bat_ctrl() just waits for a normal event, we no longer call this pattern passivate / reactivate in SimPy 3.

Waiting for another process to terminate

The example above has a problem: it may happen that the vehicles wants to park for a shorter duration than it takes to
charge the battery (this is the case if both, charging and parking would take 60 to 90 minutes).

3.4. Process Interaction 19

SimPy Documentation, Versão 3.0.10

To fix this problem we have to slightly change our model. A new bat_ctrl() will be started every time the EV
starts parking. The EV then waits until the parking duration is over and until the charging has stopped:

>>> class EV:
... def __init__(self, env):
... self.env = env
... self.drive_proc = env.process(self.drive(env))
...
... def drive(self, env):
... while True:
... # Drive for 20-40 min
... yield env.timeout(randint(20, 40))
...
... # Park for 1-6 hours
... print('Start parking at', env.now)
... charging = env.process(self.bat_ctrl(env))
... parking = env.timeout(randint(60, 360))
... yield charging & parking
... print('Stop parking at', env.now)
...
... def bat_ctrl(self, env):
... print('Bat. ctrl. started at', env.now)
... # Intelligent charging behavior here ...
... yield env.timeout(randint(30, 90))
... print('Bat. ctrl. done at', env.now)
...
>>> env = simpy.Environment()
>>> ev = EV(env)
>>> env.run(until=310)
Start parking at 29
Bat. ctrl. started at 29
Bat. ctrl. done at 83
Stop parking at 305

Again, nothing new (if you’ve read the Events guide) and special is happening. SimPy processes are events, too, so
you can yield them and will thus wait for them to get triggered. You can also wait for two events at the same time by
concatenating them with & (see Waiting for multiple events at once).

Interrupting another process

As usual, we now have another problem: Imagine, a trip is very urgent, but with the current implementation, we always
need to wait until the battery is fully charged. If we could somehow interrupt that ...

Fortunate coincidence, there is indeed a way to do exactly this. You can call interrupt() on a Process. This
will throw an Interrupt exception into that process, resuming it immediately:

>>> class EV:
... def __init__(self, env):
... self.env = env
... self.drive_proc = env.process(self.drive(env))
...
... def drive(self, env):
... while True:
... # Drive for 20-40 min
... yield env.timeout(randint(20, 40))
...
... # Park for 1 hour
... print('Start parking at', env.now)

3.4. Process Interaction 20

SimPy Documentation, Versão 3.0.10

... charging = env.process(self.bat_ctrl(env))

... parking = env.timeout(60)

... yield charging | parking

... if not charging.triggered:

... # Interrupt charging if not already done.

... charging.interrupt('Need to go!')

... print('Stop parking at', env.now)

...

... def bat_ctrl(self, env):

... print('Bat. ctrl. started at', env.now)

... try:

... yield env.timeout(randint(60, 90))

... print('Bat. ctrl. done at', env.now)

... except simpy.Interrupt as i:

... # Onoes! Got interrupted before the charging was done.

... print('Bat. ctrl. interrupted at', env.now, 'msg:',

... i.cause)

...
>>> env = simpy.Environment()
>>> ev = EV(env)
>>> env.run(until=100)
Start parking at 31
Bat. ctrl. started at 31
Stop parking at 91
Bat. ctrl. interrupted at 91 msg: Need to go!

What process.interrupt() actually does is scheduling an Interruption event for immediate execution. If
this event is executed it will remove the victim process’ _resume() method from the callbacks of the event that it is
currently waiting for (see target). Following that it will throw the Interrupt exception into the process.

Since we don’t do anything special to the original target event of the process, the interrupted process can yield the
same event again after catching the Interrupt – Imagine someone waiting for a shop to open. The person may get
interrupted by a phone call. After finishing the call, he or she checks if the shop already opened and either enters or
continues to wait.

Shared Resources

Shared resources are another way to model Process Interaction. They form a congestion point where processes queue
up in order to use them.

SimPy defines three categories of resources:

• Resources – Resources that can be used by a limited number of processes at a time (e.g., a gas station with a
limited number of fuel pumps).

• Containers – Resources that model the production and consumption of a homogeneous, undifferentiated bulk.
It may either be continuous (like water) or discrete (like apples).

• Stores – Resources that allow the production and consumption of Python objects.

The basic concept of resources

All resources share the same basic concept: The resource itself is some kind of a container with a, usually limited,
capacity. Processes can either try to put something into the resource or try to get something out. If the resource is full
or empty, they have to queue up and wait.

3.5. Shared Resources 21

SimPy Documentation, Versão 3.0.10

This is roughly how every resource looks:

BaseResource(capacity):
put_queue
get_queue

put(): event
get(): event

Every resource has a maximum capacity and two queues: one for processes that want to put something into it and one
for processes that want to get something out. The put() and get() methods both return an event that is triggered
when the corresponding action was successful.

Resources and interrupts

While a process is waiting for a put or get event to succeed, it may be interrupted by another process. After catching
the interrupt, the process has two possibilities:

1. It may continue to wait for the request (by yielding the event again).

2. It may stop waiting for the request. In this case, it has to call the event’s cancel() method.

Since you can easily forget this, all resources events are context managers (see the Python docs for details).

The resource system is modular and extensible. Resources can, for example, use specialized queues and event types.
This allows them to use sorted queues, to add priorities to events, or to offer preemption.

Resources

Resources can be used by a limited number of processes at a time (e.g., a gas station with a limited number of fuel
pumps). Processes request these resources to become a user (or to “own” them) and have to release them once they
are done (e.g., vehicles arrive at the gas station, use a fuel-pump, if one is available, and leave when they are done).

Requesting a resource is modeled as “putting a process’ token into the resource” and releasing a resource correspond-
ingly as “getting a process’ token out of the resource”. Thus, calling request()/release() is equivalent to
calling put()/get(). Releasing a resource will always succeed immediately.

SimPy implements three resource types:

1. Resource

2. PriorityResource, where queueing processes are sorted by priority

3. PreemptiveResource, where processes additionally may preempt other processes with a lower priority

Resource

The Resource is conceptually a semaphore. Its only parameter – apart from the obligatory reference to an
Environment – is its capacity. It must be a positive number and defaults to 1: Resource(env, capacity=1).

Instead of just counting its current users, it stores the request event as an “access token” for each user. This is, for
example, useful for adding preemption (see below).

Here is a basic example for using a resource:

3.5. Shared Resources 22

https://docs.python.org/3/reference/compound_stmts.html#with

SimPy Documentation, Versão 3.0.10

>>> import simpy
>>>
>>> def resource_user(env, resource):
... request = resource.request() # Generate a request event
... yield request # Wait for access
... yield env.timeout(1) # Do something
... resource.release(request) # Release the resource
...
>>> env = simpy.Environment()
>>> res = simpy.Resource(env, capacity=1)
>>> user = env.process(resource_user(env, res))
>>> env.run()

Note, that you have to release the resource under all conditions; for example, if you got interrupted while waiting
for or using the resource. In order to help you with that and to avoid too many try: ... finally: ...
constructs, request events can be used as context manager:

>>> def resource_user(env, resource):
... with resource.request() as req: # Generate a request event
... yield req # Wait for access
... yield env.timeout(1) # Do something
... # Resource released automatically
>>> user = env.process(resource_user(env, res))
>>> env.run()

Resources allow you to retrieve lists of the current users or queued users, the number of current users and the resource’s
capacity:

>>> res = simpy.Resource(env, capacity=1)
>>>
>>> def print_stats(res):
... print('%d of %d slots are allocated.' % (res.count, res.capacity))
... print(' Users:', res.users)
... print(' Queued events:', res.queue)
>>>
>>>
>>> def user(res):
... print_stats(res)
... with res.request() as req:
... yield req
... print_stats(res)
... print_stats(res)
>>>
>>> procs = [env.process(user(res)), env.process(user(res))]
>>> env.run()
0 of 1 slots are allocated.

Users: []
Queued events: []

1 of 1 slots are allocated.
Users: [<Request() object at 0x...>]
Queued events: []

1 of 1 slots are allocated.
Users: [<Request() object at 0x...>]
Queued events: [<Request() object at 0x...>]

0 of 1 slots are allocated.
Users: []
Queued events: [<Request() object at 0x...>]

1 of 1 slots are allocated.
Users: [<Request() object at 0x...>]

3.5. Shared Resources 23

SimPy Documentation, Versão 3.0.10

Queued events: []
0 of 1 slots are allocated.

Users: []
Queued events: []

PriorityResource

As you may know from the real world, not every one is equally important. To map that to SimPy, there’s the Prior-
ityResource. This subclass of Resource lets requesting processes provide a priority for each request. More important
requests will gain access to the resource earlier than less important ones. Priority is expressed by integer numbers;
smaller numbers mean a higher priority.

Apart from that, it works like a normal Resource:

>>> def resource_user(name, env, resource, wait, prio):
... yield env.timeout(wait)
... with resource.request(priority=prio) as req:
... print('%s requesting at %s with priority=%s' % (name, env.now, prio))
... yield req
... print('%s got resource at %s' % (name, env.now))
... yield env.timeout(3)
...
>>> env = simpy.Environment()
>>> res = simpy.PriorityResource(env, capacity=1)
>>> p1 = env.process(resource_user(1, env, res, wait=0, prio=0))
>>> p2 = env.process(resource_user(2, env, res, wait=1, prio=0))
>>> p3 = env.process(resource_user(3, env, res, wait=2, prio=-1))
>>> env.run()
1 requesting at 0 with priority=0
1 got resource at 0
2 requesting at 1 with priority=0
3 requesting at 2 with priority=-1
3 got resource at 3
2 got resource at 6

Although p3 requested the resource later than p2, it could use it earlier because its priority was higher.

PreemptiveResource

Sometimes, new requests are so important that queue-jumping is not enough and they need to kick existing users out
of the resource (this is called preemption). The PreemptiveResource allows you to do exactly this:

>>> def resource_user(name, env, resource, wait, prio):
... yield env.timeout(wait)
... with resource.request(priority=prio) as req:
... print('%s requesting at %s with priority=%s' % (name, env.now, prio))
... yield req
... print('%s got resource at %s' % (name, env.now))
... try:
... yield env.timeout(3)
... except simpy.Interrupt as interrupt:
... by = interrupt.cause.by
... usage = env.now - interrupt.cause.usage_since
... print('%s got preempted by %s at %s after %s' %
... (name, by, env.now, usage))
...

3.5. Shared Resources 24

SimPy Documentation, Versão 3.0.10

>>> env = simpy.Environment()
>>> res = simpy.PreemptiveResource(env, capacity=1)
>>> p1 = env.process(resource_user(1, env, res, wait=0, prio=0))
>>> p2 = env.process(resource_user(2, env, res, wait=1, prio=0))
>>> p3 = env.process(resource_user(3, env, res, wait=2, prio=-1))
>>> env.run()
1 requesting at 0 with priority=0
1 got resource at 0
2 requesting at 1 with priority=0
3 requesting at 2 with priority=-1
1 got preempted by <Process(resource_user) object at 0x...> at 2 after 2
3 got resource at 2
2 got resource at 5

PreemptiveResource inherits from PriorityResource and adds a preempt flag (that defaults to True) to request().
By setting this to False (resource.request(priority=x, preempt=False)), a process can decide to
not preempt another resource user. It will still be put in the queue according to its priority, though.

The implementation of PreemptiveResource values priorities higher than preemption. That means preempt requests
are not allowed to cheat and jump over a higher prioritized request. The following example shows that preemptive low
priority requests cannot queue-jump over high priority requests:

>>> def user(name, env, res, prio, preempt):
... with res.request(priority=prio, preempt=preempt) as req:
... try:
... print('%s requesting at %d' % (name, env.now))
... yield req
... print('%s got resource at %d' % (name, env.now))
... yield env.timeout(3)
... except simpy.Interrupt:
... print('%s got preempted at %d' % (name, env.now))
>>>
>>> env = simpy.Environment()
>>> res = simpy.PreemptiveResource(env, capacity=1)
>>> A = env.process(user('A', env, res, prio=0, preempt=True))
>>> env.run(until=1) # Give A a head start
A requesting at 0
A got resource at 0
>>> B = env.process(user('B', env, res, prio=-2, preempt=False))
>>> C = env.process(user('C', env, res, prio=-1, preempt=True))
>>> env.run()
B requesting at 1
C requesting at 1
B got resource at 3
C got resource at 6

1. Process A requests the resource with priority 0. It immediately becomes a user.

2. Process B requests the resource with priority -2 but sets preempt to False. It will queue up and wait.

3. Process C requests the resource with priority -1 but leaves preempt True. Normally, it would preempt A but in
this case, B is queued up before C and prevents C from preempting A. C can also not preempt B since its priority
is not high enough.

Thus, the behavior in the example is the same as if no preemption was used at all. Be careful when using mixed
preemption!

Due to the higher priority of process B, no preemption occurs in this example. Note that an additional request with a
priority of -3 would be able to preempt A.

3.5. Shared Resources 25

SimPy Documentation, Versão 3.0.10

If your use-case requires a different behaviour, for example queue-jumping or valuing preemption over priorities, you
can subclass PreemptiveResource and override the default behaviour.

Containers

Containers help you modelling the production and consumption of a homogeneous, undifferentiated bulk. It may
either be continuous (like water) or discrete (like apples).

You can use this, for example, to model the gas / petrol tank of a gas station. Tankers increase the amount of gasoline
in the tank while cars decrease it.

The following example is a very simple model of a gas station with a limited number of fuel dispensers (modeled as
Resource) and a tank modeled as Container:

>>> class GasStation:
... def __init__(self, env):
... self.fuel_dispensers = simpy.Resource(env, capacity=2)
... self.gas_tank = simpy.Container(env, init=100, capacity=1000)
... self.mon_proc = env.process(self.monitor_tank(env))
...
... def monitor_tank(self, env):
... while True:
... if self.gas_tank.level < 100:
... print('Calling tanker at %s' % env.now)
... env.process(tanker(env, self))
... yield env.timeout(15)
>>>
>>>
>>> def tanker(env, gas_station):
... yield env.timeout(10) # Need 10 Minutes to arrive
... print('Tanker arriving at %s' % env.now)
... amount = gas_station.gas_tank.capacity - gas_station.gas_tank.level
... yield gas_station.gas_tank.put(amount)
>>>
>>>
>>> def car(name, env, gas_station):
... print('Car %s arriving at %s' % (name, env.now))
... with gas_station.fuel_dispensers.request() as req:
... yield req
... print('Car %s starts refueling at %s' % (name, env.now))
... yield gas_station.gas_tank.get(40)
... yield env.timeout(5)
... print('Car %s done refueling at %s' % (name, env.now))
>>>
>>>
>>> def car_generator(env, gas_station):
... for i in range(4):
... env.process(car(i, env, gas_station))
... yield env.timeout(5)
>>>
>>>
>>> env = simpy.Environment()
>>> gas_station = GasStation(env)
>>> car_gen = env.process(car_generator(env, gas_station))
>>> env.run(35)
Car 0 arriving at 0
Car 0 starts refueling at 0
Car 1 arriving at 5

3.5. Shared Resources 26

SimPy Documentation, Versão 3.0.10

Car 0 done refueling at 5
Car 1 starts refueling at 5
Car 2 arriving at 10
Car 1 done refueling at 10
Car 2 starts refueling at 10
Calling tanker at 15
Car 3 arriving at 15
Car 3 starts refueling at 15
Tanker arriving at 25
Car 2 done refueling at 30
Car 3 done refueling at 30

Containers allow you to retrieve their current level as well as their capacity (see
GasStation.monitor_tank() and tanker()). You can also access the list of waiting events via the
put_queue and get_queue attributes (similar to Resource.queue).

Stores

Using Stores you can model the production and consumption of concrete objects (in contrast to the rather abstract
“amount” stored in containers). A single Store can even contain multiple types of objects.

Beside Store, there is a FilterStore that lets you use a custom function to filter the objects you get out of the
store and PriorityStore where items come out of the store in priority order.

Here is a simple example modelling a generic producer/consumer scenario:

>>> def producer(env, store):
... for i in range(100):
... yield env.timeout(2)
... yield store.put('spam %s' % i)
... print('Produced spam at', env.now)
>>>
>>>
>>> def consumer(name, env, store):
... while True:
... yield env.timeout(1)
... print(name, 'requesting spam at', env.now)
... item = yield store.get()
... print(name, 'got', item, 'at', env.now)
>>>
>>>
>>> env = simpy.Environment()
>>> store = simpy.Store(env, capacity=2)
>>>
>>> prod = env.process(producer(env, store))
>>> consumers = [env.process(consumer(i, env, store)) for i in range(2)]
>>>
>>> env.run(until=5)
0 requesting spam at 1
1 requesting spam at 1
Produced spam at 2
0 got spam 0 at 2
0 requesting spam at 3
Produced spam at 4
1 got spam 1 at 4

As with the other resource types, you can get a store’s capacity via the capacity attribute. The attribute items
points to the list of items currently available in the store. The put and get queues can be accessed via the put_queue

3.5. Shared Resources 27

SimPy Documentation, Versão 3.0.10

and get_queue attributes.

FilterStore can, for example, be used to model machine shops where machines have varying attributes. This can be
useful if the homogeneous slots of a Resource are not what you need:

>>> from collections import namedtuple
>>>
>>> Machine = namedtuple('Machine', 'size, duration')
>>> m1 = Machine(1, 2) # Small and slow
>>> m2 = Machine(2, 1) # Big and fast
>>>
>>> env = simpy.Environment()
>>> machine_shop = simpy.FilterStore(env, capacity=2)
>>> machine_shop.items = [m1, m2] # Pre-populate the machine shop
>>>
>>> def user(name, env, ms, size):
... machine = yield ms.get(lambda machine: machine.size == size)
... print(name, 'got', machine, 'at', env.now)
... yield env.timeout(machine.duration)
... yield ms.put(machine)
... print(name, 'released', machine, 'at', env.now)
>>>
>>>
>>> users = [env.process(user(i, env, machine_shop, (i % 2) + 1))
... for i in range(3)]
>>> env.run()
0 got Machine(size=1, duration=2) at 0
1 got Machine(size=2, duration=1) at 0
1 released Machine(size=2, duration=1) at 1
0 released Machine(size=1, duration=2) at 2
2 got Machine(size=1, duration=2) at 2
2 released Machine(size=1, duration=2) at 4

With a PriorityStore, we can model items of differing priorities. In the following example, an inspector process
finds and logs issues that a separate maintainer process repairs in priority order.

>>> env = simpy.Environment()
>>> issues = simpy.PriorityStore(env)
>>>
>>> def inspector(env, issues):
... for issue in [simpy.PriorityItem('P2', '#0000'),
... simpy.PriorityItem('P0', '#0001'),
... simpy.PriorityItem('P3', '#0002'),
... simpy.PriorityItem('P1', '#0003')]:
... yield env.timeout(1)
... print(env.now, 'log', issue)
... yield issues.put(issue)
>>>
>>> def maintainer(env, issues):
... while True:
... yield env.timeout(3)
... issue = yield issues.get()
... print(env.now, 'repair', issue)
>>>
>>> _ = env.process(inspector(env, issues))
>>> _ = env.process(maintainer(env, issues))
>>> env.run()
1 log PriorityItem(priority='P2', item='#0000')
2 log PriorityItem(priority='P0', item='#0001')

3.5. Shared Resources 28

SimPy Documentation, Versão 3.0.10

3 log PriorityItem(priority='P3', item='#0002')
3 repair PriorityItem(priority='P0', item='#0001')
4 log PriorityItem(priority='P1', item='#0003')
6 repair PriorityItem(priority='P1', item='#0003')
9 repair PriorityItem(priority='P2', item='#0000')
12 repair PriorityItem(priority='P3', item='#0002')

Real-time simulations

Sometimes, you might not want to perform a simulation as fast as possible but synchronous to the wall-clock time.
This kind of simulation is also called real-time simulation.

Real-time simulations may be necessary

• if you have hardware-in-the-loop,

• if there is human interaction with your simulation, or

• if you want to analyze the real-time behavior of an algorithm.

To convert a simulation into a real-time simulation, you only need to replace SimPy’s default Environment with a
simpy.rt.RealtimeEnvironment. Apart from the initial_time argument, there are two additional parameters:
factor and strict: RealtimeEnvironment(initial_time=0, factor=1.0, strict=True).

The factor defines how much real time passes with each step of simulation time. By default, this is one second. If you
set factor=0.1, a unit of simulation time will only take a tenth of a second; if you set factor=60, it will take a
minute.

Here is a simple example for converting a normal simulation to a real-time simulation with a duration of one tenth of
a second per simulation time unit:

>>> import time
>>> import simpy
>>>
>>> def example(env):
... start = time.perf_counter()
... yield env.timeout(1)
... end = time.perf_counter()
... print('Duration of one simulation time unit: %.2fs' % (end - start))
>>>
>>> env = simpy.Environment()
>>> proc = env.process(example(env))
>>> env.run(until=proc)
Duration of one simulation time unit: 0.00s
>>>
>>> import simpy.rt
>>> env = simpy.rt.RealtimeEnvironment(factor=0.1)
>>> proc = env.process(example(env))
>>> env.run(until=proc)
Duration of one simulation time unit: 0.10s

If the strict parameter is set to True (the default), the step() and run() methods will raise a RuntimeError
if the computation within a simulation time step take more time than the real-time factor allows. In the following
example, a process will perform a task that takes 0.02 seconds within a real-time environment with a time factor of
0.01 seconds:

>>> import time
>>> import simpy.rt

3.6. Real-time simulations 29

SimPy Documentation, Versão 3.0.10

>>>
>>> def slow_proc(env):
... time.sleep(0.02) # Heavy computation :-)
... yield env.timeout(1)
>>>
>>> env = simpy.rt.RealtimeEnvironment(factor=0.01)
>>> proc = env.process(slow_proc(env))
>>> try:
... env.run(until=proc)
... print('Everything alright')
... except RuntimeError:
... print('Simulation is too slow')
Simulation is too slow

To suppress the error, simply set strict=False:

>>> env = simpy.rt.RealtimeEnvironment(factor=0.01, strict=False)
>>> proc = env.process(slow_proc(env))
>>> try:
... env.run(until=proc)
... print('Everything alright')
... except RuntimeError:
... print('Simulation is too slow')
Everything alright

That’s it. Real-time simulations are that simple with SimPy!

Monitorando

O processo de monitoramento é um tópico relativamente complexo por ter diferentes casos de uso e uma boa diversi-
dade de variações.

Este guia apresenta alguns dos casos mais comuns e possivelmente que mais se destacam. São propostas que podem
lhe dar algumas dicas/idéias de como implementar o monitoramento de uma simulação e adaptá-la a sua necessidade.

Porém, antes de começar é preciso definir:

O que você deseja monitorar?

• Seus Processos?

• Uso de recursos?

• Rastrear todos os Eventos da simulação?

Quando você quer monitorar?

• Em intervalos regulares?

• Quando algo ocorrer?

Como pretende armazenar os dados coletados?

• Em uma lista simples?

• Registrar em um arquivo?

• Armazenar em uma base de dados?

As seções a seguir analizam estas perguntas e provêem alguns exemplos para lhe ajudar.

3.7. Monitorando 30

SimPy Documentation, Versão 3.0.10

Monitorando seus processos

Monitorar seus proprios processos é uma coisa relativamente simples, afinal você controla o código. Temos conheci-
mento que a coisa mais comum que se deseja fazer é monitorar o valor de uma ou mais variáveis de estado toda vez
que elas mudarem ou em um intervalo de tempo e aramazenar essa informação em algum lugar (na memória, em um
banco de dados ou até mesmo um arquivo, por exemplo).

Um exemplo simples seria o uso de uma lista e adicionar os valores desejados para análse a cada vez que ela mudasse:

>>> import simpy
>>>
>>> data = [] # Esta lista armazenara os dados coletados
>>>
>>> def test_process(env, data):
... val = 0
... for i in range(5):
... val += env.now
... data.append(val) # Armazenando o dado
... yield env.timeout(1)
>>>
>>> env = simpy.Environment()
>>> p = env.process(test_process(env, data))
>>> env.run(p)
>>> print('Collected', data) # Imprimindo os dados coletados
Collected [0, 1, 3, 6, 10]

Se precisa monitorar múltiplas variáveis, você pode inserir tuplas em sua lista.

Caso queira armazenar os dados em um array Numpy ou uma base de dados, muitas vezes você pode melhorar o
desempenho se você guardar os dados em uma lista no Python e só escrever as partes maiores (ou o dataset completo
) em uma base de dados.

Uso de recursos

São muitos os casos de uso para monitoramento de recursos, por exemplo você pode desejar monitorar:

• O uso de um recurso no decorrer da simulação e ter média de uso, que seria,

– o número de processos que usaram o recurso no decorrer da simulação

– o nível de um contêiner

– a quantidade de itens em uma loja

Isto pode ser monitorado também no decorrer do tempo da simulação discreta ou a cada vez que houver uma
mudança.

• O número de processos armazenados ou retirados de uma fila no decorrer da simulação (e a quantidade média
). Mais uma vez, isto pode ser monitorado no decorrer do tempo da simulação ou a cada mudança.

• Para Recursos Preemptivos, você pode desejar medir a frequência com que a preempção ocorre no decorrer do
tempo da simulação.

Ao contrário do que ocorre nos processos, você não tem acesso direto ao código das classes de recurso embutidas.
Porém isso não o impede de monitorá-las.

Algumas adaptações nos métodos dos recursos permitem que você capture todos os dados necessários.

Segue um exemplo que demonstra como você pode adicionar retornos para um recurso que deverá ser chamado apenas
antes ou depois de um evento get / request ou um put / release:

3.7. Monitorando 31

SimPy Documentation, Versão 3.0.10

>>> from functools import partial, wraps
>>> import simpy
>>>
>>> def patch_resource(resource, pre=None, post=None):
... """Ajuste Patch *resource* que executa o metodo *pre* antes de cada
... operacao de put/get/request/release e o metodo *post* executado apos
... cada operacao. O unico argumento solicitado para essas funcoes eh a
... instancia do recurso.
...
... """
... def get_wrapper(func):
... # Cria um wrapper para put/get/request/release
... @wraps(func)
... def wrapper(*args, **kwargs):
... # Este wrapper executa a
... # funcao "pre"
... if pre:
... pre(resource)
...
... # Executa a operacao atual
... ret = func(*args, **kwargs)
...
... # Chama a funcao "post"
... if post:
... post(resource)
...
... return ret
... return wrapper
...
... # Substitui as operacoes originais com nosso wrapper
... for name in ['put', 'get', 'request', 'release']:
... if hasattr(resource, name):
... setattr(resource, name, get_wrapper(getattr(resource, name)))
>>>
>>> def monitor(data, resource):
... """Esta eh a funcao de monitoramento."""
... item = (
... resource._env.now, # O tempo na simulacao atual
... resource.count, # O numero de usuarios
... len(resource.queue), # O numero de processos enfileirados
...)
... data.append(item)
>>>
>>> def test_process(env, res):
... with res.request() as req:
... yield req
... yield env.timeout(1)
>>>
>>> env = simpy.Environment()
>>>
>>> res = simpy.Resource(env, capacity=1)
>>> data = []
>>> # Vincular *data* como o primeiro argumento de monitor()
>>> # veja mais em https://docs.python.org/3/library/functools.html#functools.partial
>>> monitor = partial(monitor, data)
>>> patch_resource(res, post=monitor) # Altera/Modifica (somente) esta instancia do recurso
>>>
>>> p = env.process(test_process(env, res))

3.7. Monitorando 32

SimPy Documentation, Versão 3.0.10

>>> env.run(p)
>>>
>>> print(data)
[(0, 1, 0), (1, 0, 0)]

O exemplo acima é bem genérico mas também é uma forma bem flexível de monitorar todos os aspectos de diversos
tipos de recursos.

O outro extremo seria tornar o monitoramento um caso de uso. Suponha que você só quer saber quantos processos
estão aguardando por um Resource em um determinado momento:

>>> import simpy
>>>
>>> class MonitoredResource(simpy.Resource):
... def __init__(self, *args, **kwargs):
... super().__init__(*args, **kwargs)
... self.data = []
...
... def request(self, *args, **kwargs):
... self.data.append((self._env.now, len(self.queue)))
... return super().request(*args, **kwargs)
...
... def release(self, *args, **kwargs):
... self.data.append((self._env.now, len(self.queue)))
... return super().release(*args, **kwargs)
>>>
>>> def test_process(env, res):
... with res.request() as req:
... yield req
... yield env.timeout(1)
>>>
>>> env = simpy.Environment()
>>>
>>> res = MonitoredResource(env, capacity=1)
>>> p1 = env.process(test_process(env, res))
>>> p2 = env.process(test_process(env, res))
>>> env.run()
>>>
>>> print(res.data)
[(0, 0), (0, 0), (1, 1), (2, 0)]

Ao contrário do primeiro exemplo, agora não se tem um só recurso modificado/patched mas sim uma classe toda. Tam-
bém foi removida toda a parte considerada adaptável do primeiro exemplo: Só é monitorado o Resource nomeado
como tal, só é coletado o dado antes das requisições serem feitas e só é coletado/registrado o momento/tempo e o
tamanho da fila. Porém, você precisaria de menos da metade do código.

Rastrear Eventos

Com o objetivo de fazer um debug ou visualizar uma simulação, você pode querer rastrear quando os eventos são
criados, acionados e processados. Talvez você também queira rastrear quais processos criaram um determinado evento
e que processos aguardaram um determinado evento.

As duas funções mais interessantes para esse caso de uso são Environment.step(), onde todos os eventos são
processados e Environment.schedule(), onde todos os eventos são agendados e inseridos em uma fila de
eventos do Simpy.

Aqui temos um exemplo que demonstra como Environment.step() pode ser adaptado de modo a rastrear todos
os eventos processados:

3.7. Monitorando 33

SimPy Documentation, Versão 3.0.10

>>> from functools import partial, wraps
>>> import simpy
>>>
>>> def trace(env, callback):
... """Substitui o método ``step()`` de *env* por uma funcao de rastreio
... que executa *callbacks* informando o momento do evento, prioridade,
... identificacao e sua instancia antes de que ela seja processada.
...
... """
... def get_wrapper(env_step, callback):
... """Gerando o wrapper para o metodo env.step()."""
... @wraps(env_step)
... def tracing_step():
... """Executa *callback* para o proximo evento, caso tenha
... ocorrido um antes executando ``env.step()``."""
... if len(env._queue):
... t, prio, eid, event = env._queue[0]
... callback(t, prio, eid, event)
... return env_step()
... return tracing_step
...
... env.step = get_wrapper(env.step, callback)
>>>
>>> def monitor(data, t, prio, eid, event):
... data.append((t, eid, type(event)))
>>>
>>> def test_process(env):
... yield env.timeout(1)
>>>
>>> data = []
>>> # Vincular *data* como o primeiro argumento de monitor()
>>> # mais em https://docs.python.org/3/library/functools.html#functools.partial
>>> monitor = partial(monitor, data)
>>>
>>> env = simpy.Environment()
>>> trace(env, monitor)
>>>
>>> p = env.process(test_process(env))
>>> env.run(until=p)
>>>
>>> for d in data:
... print(d)
(0, 0, <class 'simpy.events.Initialize'>)
(1, 1, <class 'simpy.events.Timeout'>)
(1, 2, <class 'simpy.events.Process'>)

O exemplo acima é baseado em um pull request de Steve Pothier.

Usando os mesmos conceitos, você também pode fazer um patch do método Environment.schedule(). Isso
lhe dará acesso ao centro da informação quando determinado evento é agendado e para que instante.

Além disso, você também pode modificar algumas ou todas as classes de evento do Simpy, por ex. o método __init__()
a fim de rastrear quando e como um evento está sendo criado.

3.7. Monitorando 34

SimPy Documentation, Versão 3.0.10

Time and Scheduling

The aim of this section is to give you a deeper understanding of how time passes in SimPy and how it schedules and
processes events.

What is time?

Time itself is not easy to grasp. The wikipedians describe it this way:

«Time is the indefinite continued progress of existence and events that occur in apparently irreversible
succession from the past through the present to the future. Time is a component quantity of various
measurements used to sequence events, to compare the duration of events or the intervals between them,
and to quantify rates of change of quantities in material reality or in the conscious experience. Time is
often referred to as the fourth dimension, along with the three spatial dimensions.»

What’s the problem with it?

Often, events (in the real world) appear to happen “at the same time”, when they are in fact happening at slightly
different times. Here is an obvious example: Alice and Bob have birthday on the same day. If your time scale is in
days, both birthday events happen at the same time. If you increase the resolution of you clock, e.g. to minutes, you
may realise that Alice was actually born at 0:42 in the morning and Bob at 11:14 and that there’s quite a difference
between the time of both events.

Doing simulation on computers suffers from similar problems. Integers (and floats, too) are discrete numbers with a
lot of void in between them. Thus, events that would occur after each other in the real world (e.g., at t1 = 0.1 and t2 =
0.2) might occur at the “same” time if mapped to an integer scale (e.g., at t = 0).

On the other hand, SimPy is (like most simulation frameworks) a single-threaded, deterministic library. It processes
events sequentially – one after another. If two events are scheduled at the same time, the one that is scheduled first
will also be the processed first (FIFO).

That is very important for you to understand. The processes in your modeled/simulated world may run “in parallel”,
but when the simulation runs on your CPU, all events are processed sequentially and deterministically. If you run your
simulation multiple times (and if you don’t use random ;-)), you will always get the same results.

So keep this in mind:

• In the real world, there’s usually no at the same time.

• Discretization of the time scale can make events appear to be at the same time.

• SimPy processes events one after another, even if they have the same time.

SimPy Events and time

Before we continue, let’s recap the states an event can be in (see Events for details):

• untriggered: not known to the event queue

• triggered: scheduled at a time t and inserted into the event queue

• processed: removed from the event queue

SimPy’s event queue is implemented as a heap queue: “Heaps are binary trees for which every parent node has a value
less than or equal to any of its children.” So if we insert events as tuples (t, event) (with t being the scheduled time)
into it, the first element in the queue will by definition always be the one with the smallest t and the next one to be
processed.

3.8. Time and Scheduling 35

https://en.wikipedia.org/wiki/Time
http://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html
http://docs.python.org/3/library/random.html#module-random
https://docs.python.org/3/library/heapq.html

SimPy Documentation, Versão 3.0.10

However, storing (t, event) tuples will not work if two events are scheduled at the same time because events are not
comparable. To fix this, we also store a strictly increasing event ID with them: (t, eid, event). That way, if two events
get scheduled for the same time, the one scheduled first will always be processed first.

Porting from SimPy 2 to 3

Porting from SimPy 2 to SimPy 3 is not overly complicated. A lot of changes merely comprise copy/paste.

This guide describes the conceptual and API changes between both SimPy versions and shows you how to change
your code for SimPy 3.

Imports

In SimPy 2, you had to decide at import-time whether you wanted to use a normal simulation
(SimPy.Simulation), a real-time simulation (SimPy.SimulationRT) or something else. You usually had to
import Simulation (or SimulationRT), Process and some of the SimPy keywords (hold or passivate,
for example) from that package.

In SimPy 3, you usually need to import much less classes and modules (for example, all keywords are gone). In most
use cases you will now only need to import simpy .

SimPy 2

from Simpy.Simulation import Simulation, Process, hold

SimPy 3

import simpy

The Simulation* classes

SimPy 2 encapsulated the simulation state in a Simulation* class (e.g., Simulation, SimulationRT or
SimulationTrace). This class also had a simulate() method that executed a normal simulation, a real-time
simulation or something else (depending on the particular class).

There was a global Simulation instance that was automatically created when you imported SimPy. You could also
instantiate it on your own to uses SimPy’s object-orient API. This led to some confusion and problems, because you
had to pass the Simulation instance around when you were using the object-oriented API but not if you were using
the procedural API.

In SimPy 3, an Environment replaces Simulation and RealtimeEnvironment replaces SimulationRT.
You always need to instantiate an environment. There’s no more global state.

To execute a simulation, you call the environment’s run() method.

SimPy 2

Procedural API
from SimPy.Simulation import initialize, simulate

initialize()
Start processes
simulate(until=10)

3.9. Porting from SimPy 2 to 3 36

SimPy Documentation, Versão 3.0.10

Object-oriented API
from SimPy.Simulation import Simulation

sim = Simulation()
Start processes
sim.simulate(until=10)

SimPy3

import simpy

env = simpy.Environment()
Start processes
env.run(until=10)

Defining a Process

Processes had to inherit the Process base class in SimPy 2. Subclasses had to implement at least a so called Process
Execution Method (PEM) (which is basically a generator function) and in most cases __init__(). Each process
needed to know the Simulation instance it belonged to. This reference was passed implicitly in the procedural
API and had to be passed explicitly in the object-oriented API. Apart from some internal problems, this made it quite
cumbersome to define a simple process.

Processes were started by passing the Process and a generator instance created by the generator function to either
the global activate() function or the corresponding Simulation method.

A process in SimPy 3 is a Python generator (no matter if it’s defined on module level or as an instance method)
wrapped in a Process instance. The generator usually requires a reference to a Environment to interact with, but
this is completely optional.

Processes are can be started by creating a Process instance and passing the generator to it. The environment provides
a shortcut for this: process().

SimPy 2

Procedural API
from Simpy.Simulation import Process

class MyProcess(Process):
def __init__(self, another_param):

super().__init__()
self.another_param = another_param

def generator_function(self):
"""Implement the process' behavior."""
yield something

initialize()
proc = Process('Spam')
activate(proc, proc.generator_function())

Object-oriented API
from SimPy.Simulation import Simulation, Process

class MyProcess(Process):
def __init__(self, sim, another_param):

super().__init__(sim=sim)
self.another_param = another_param

3.9. Porting from SimPy 2 to 3 37

SimPy Documentation, Versão 3.0.10

def generator_function(self):
"""Implement the process' behaviour."""
yield something

sim = Simulation()
proc = Process(sim, 'Spam')
sim.activate(proc, proc.generator_function())

SimPy 3

import simpy

def generator_function(env, another_param):
"""Implement the process' behavior."""
yield something

env = simpy.Environment()
proc = env.process(generator_function(env, 'Spam'))

SimPy Keywords (hold etc.)

In SimPy 2, processes created new events by yielding a SimPy Keyword and some additional parameters (at least
self). These keywords had to be imported from SimPy.Simulation* if they were used. Internally, the keywords
were mapped to a function that generated the according event.

In SimPy 3, you directly yield events if you want to wait for an event to occur. You can instantiate an event directly
or use the shortcuts provided by Environment.

Generally, whenever a process yields an event, the execution of the process is suspended and resumed once the event
has been triggered. To motivate this understanding, some of the events were renamed. For example, the hold keyword
meant to wait until some time has passed. In terms of events this means that a timeout has happened. Therefore hold
has been replaced by a Timeout event.

Nota: Process is also an Event. If you want to wait for a process to finish, simply yield it.

SimPy 2

yield hold, self, duration
yield passivate, self
yield request, self, resource
yield release, self, resource
yield waitevent, self, event
yield waitevent, self, [event_a, event_b, event_c]
yield queueevent, self, event_list
yield get, self, level, amount
yield put, self, level, amount

SimPy 3

yield env.timeout(duration) # hold: renamed
yield env.event() # passivate: renamed
yield resource.request() # Request is now bound to class Resource
resource.release() # Release no longer needs to be yielded
yield event # waitevent: just yield the event
yield env.all_of([event_a, event_b, event_c]) # waitvent
yield env.any_of([event_a, event_b, event_c]) # queuevent

3.9. Porting from SimPy 2 to 3 38

SimPy Documentation, Versão 3.0.10

yield container.get(amount) # Level is now called Container
yield container.put(amount)

yield event_a | event_b # Wait for either a or b. This is new.
yield event_a & event_b # Wait for a and b. This is new.
yield env.process(calculation(env)) # Wait for the process calculation to

to finish.

Partially supported features

The following waituntil keyword is not completely supported anymore:

yield waituntil, self, cond_func

SimPy 2 was evaluating cond_func after every event, which was computationally very expensive. One possible
workaround is for example the following process, which evaluates cond_func periodically:

def waituntil(env, cond_func, delay=1):
while not cond_func():

yield env.timeout(delay)

Usage:
yield waituntil(env, cond_func)

Interrupts

In SimPy 2, interrupt() was a method of the interrupting process. The victim of the interrupt had to be passed as
an argument.

The victim was not directly notified of the interrupt but had to check if the interrupted flag was set. Afterwards,
it had to reset the interrupt via interruptReset(). You could manually set the interruptCause attribute of
the victim.

Explicitly checking for an interrupt is obviously error prone as it is too easy to be forgotten.

In SimPy 3, you call interrupt() on the victim process. You can optionally supply a cause. An Interrupt is
then thrown into the victim process, which has to handle the interrupt via try: ... except Interrupt:
....

SimPy 2

class Interrupter(Process):
def __init__(self, victim):

super().__init__()
self.victim = victim

def run(self):
yield hold, self, 1
self.interrupt(self.victim_proc)
self.victim_proc.interruptCause = 'Spam'

class Victim(Process):
def run(self):

yield hold, self, 10
if self.interrupted:

cause = self.interruptCause
self.interruptReset()

3.9. Porting from SimPy 2 to 3 39

SimPy Documentation, Versão 3.0.10

SimPy 3

def interrupter(env, victim_proc):
yield env.timeout(1)
victim_proc.interrupt('Spam')

def victim(env):
try:

yield env.timeout(10)
except Interrupt as interrupt:

cause = interrupt.cause

Conclusion

This guide is by no means complete. If you run into problems, please have a look at the other guides, the examples or
the API Reference. You are also very welcome to submit improvements. Just create a pull request at bitbucket.

3.9. Porting from SimPy 2 to 3 40

https://bitbucket.org/simpy/simpy/

CHAPTER 4

Examples

All theory is grey. In this section, we present various practical examples that demonstrate how to uses SimPy’s features.

Here’s a list of examples grouped by features they demonstrate.

Condition events

• Bank Renege

• Movie Renege

Interrupts

• Machine Shop

Monitoring

Resources: Container

• Gas Station Refueling

Resources: Preemptive Resource

• Machine Shop

Resources: Resource

• Bank Renege

• Carwash

• Gas Station Refueling

• Movie Renege

41

SimPy Documentation, Versão 3.0.10

Resources: Store

• Event Latency

• Process Communication

Shared events

• Movie Renege

Waiting for other processes

• Carwash

• Gas Station Refueling

All examples

Bank Renege

Covers:

• Resources: Resource

• Condition events

A counter with a random service time and customers who renege. Based on the program bank08.py from TheBank
tutorial of SimPy 2. (KGM)

This example models a bank counter and customers arriving t random times. Each customer has a certain patience. It
waits to get to the counter until she’s at the end of her tether. If she gets to the counter, she uses it for a while before
releasing it.

New customers are created by the source process every few time steps.

"""
Bank renege example

Covers:

- Resources: Resource
- Condition events

Scenario:
A counter with a random service time and customers who renege. Based on the
program bank08.py from TheBank tutorial of SimPy 2. (KGM)

"""
import random

import simpy

4.7. Resources: Store 42

SimPy Documentation, Versão 3.0.10

RANDOM_SEED = 42
NEW_CUSTOMERS = 5 # Total number of customers
INTERVAL_CUSTOMERS = 10.0 # Generate new customers roughly every x seconds
MIN_PATIENCE = 1 # Min. customer patience
MAX_PATIENCE = 3 # Max. customer patience

def source(env, number, interval, counter):
"""Source generates customers randomly"""
for i in range(number):

c = customer(env, 'Customer%02d' % i, counter, time_in_bank=12.0)
env.process(c)
t = random.expovariate(1.0 / interval)
yield env.timeout(t)

def customer(env, name, counter, time_in_bank):
"""Customer arrives, is served and leaves."""
arrive = env.now
print('%7.4f %s: Here I am' % (arrive, name))

with counter.request() as req:
patience = random.uniform(MIN_PATIENCE, MAX_PATIENCE)
Wait for the counter or abort at the end of our tether
results = yield req | env.timeout(patience)

wait = env.now - arrive

if req in results:
We got to the counter
print('%7.4f %s: Waited %6.3f' % (env.now, name, wait))

tib = random.expovariate(1.0 / time_in_bank)
yield env.timeout(tib)
print('%7.4f %s: Finished' % (env.now, name))

else:
We reneged
print('%7.4f %s: RENEGED after %6.3f' % (env.now, name, wait))

Setup and start the simulation
print('Bank renege')
random.seed(RANDOM_SEED)
env = simpy.Environment()

Start processes and run
counter = simpy.Resource(env, capacity=1)
env.process(source(env, NEW_CUSTOMERS, INTERVAL_CUSTOMERS, counter))
env.run()

The simulation’s output:

Bank renege
0.0000 Customer00: Here I am
0.0000 Customer00: Waited 0.000
3.8595 Customer00: Finished

10.2006 Customer01: Here I am
10.2006 Customer01: Waited 0.000

4.10. All examples 43

SimPy Documentation, Versão 3.0.10

12.7265 Customer02: Here I am
13.9003 Customer02: RENEGED after 1.174
23.7507 Customer01: Finished
34.9993 Customer03: Here I am
34.9993 Customer03: Waited 0.000
37.9599 Customer03: Finished
40.4798 Customer04: Here I am
40.4798 Customer04: Waited 0.000
43.1401 Customer04: Finished

Carwash

Covers:

• Waiting for other processes

• Resources: Resource

The Carwash example is a simulation of a carwash with a limited number of machines and a number of cars that arrive
at the carwash to get cleaned.

The carwash uses a Resource to model the limited number of washing machines. It also defines a process for
washing a car.

When a car arrives at the carwash, it requests a machine. Once it got one, it starts the carwash’s wash processes and
waits for it to finish. It finally releases the machine and leaves.

The cars are generated by a setup process. After creating an intial amount of cars it creates new car processes after a
random time interval as long as the simulation continues.

"""
Carwash example.

Covers:

- Waiting for other processes
- Resources: Resource

Scenario:
A carwash has a limited number of washing machines and defines
a washing processes that takes some (random) time.

Car processes arrive at the carwash at a random time. If one washing
machine is available, they start the washing process and wait for it
to finish. If not, they wait until they an use one.

"""
import random

import simpy

RANDOM_SEED = 42
NUM_MACHINES = 2 # Number of machines in the carwash
WASHTIME = 5 # Minutes it takes to clean a car
T_INTER = 7 # Create a car every ~7 minutes
SIM_TIME = 20 # Simulation time in minutes

4.10. All examples 44

SimPy Documentation, Versão 3.0.10

class Carwash(object):
"""A carwash has a limited number of machines (``NUM_MACHINES``) to
clean cars in parallel.

Cars have to request one of the machines. When they got one, they
can start the washing processes and wait for it to finish (which
takes ``washtime`` minutes).

"""
def __init__(self, env, num_machines, washtime):

self.env = env
self.machine = simpy.Resource(env, num_machines)
self.washtime = washtime

def wash(self, car):
"""The washing processes. It takes a ``car`` processes and tries
to clean it."""
yield self.env.timeout(WASHTIME)
print("Carwash removed %d%% of %s's dirt." %

(random.randint(50, 99), car))

def car(env, name, cw):
"""The car process (each car has a ``name``) arrives at the carwash
(``cw``) and requests a cleaning machine.

It then starts the washing process, waits for it to finish and
leaves to never come back ...

"""
print('%s arrives at the carwash at %.2f.' % (name, env.now))
with cw.machine.request() as request:

yield request

print('%s enters the carwash at %.2f.' % (name, env.now))
yield env.process(cw.wash(name))

print('%s leaves the carwash at %.2f.' % (name, env.now))

def setup(env, num_machines, washtime, t_inter):
"""Create a carwash, a number of initial cars and keep creating cars
approx. every ``t_inter`` minutes."""
Create the carwash
carwash = Carwash(env, num_machines, washtime)

Create 4 initial cars
for i in range(4):

env.process(car(env, 'Car %d' % i, carwash))

Create more cars while the simulation is running
while True:

yield env.timeout(random.randint(t_inter - 2, t_inter + 2))
i += 1
env.process(car(env, 'Car %d' % i, carwash))

Setup and start the simulation

4.10. All examples 45

SimPy Documentation, Versão 3.0.10

print('Carwash')
print('Check out http://youtu.be/fXXmeP9TvBg while simulating ... ;-)')
random.seed(RANDOM_SEED) # This helps reproducing the results

Create an environment and start the setup process
env = simpy.Environment()
env.process(setup(env, NUM_MACHINES, WASHTIME, T_INTER))

Execute!
env.run(until=SIM_TIME)

The simulation’s output:

Carwash
Check out http://youtu.be/fXXmeP9TvBg while simulating ... ;-)
Car 0 arrives at the carwash at 0.00.
Car 1 arrives at the carwash at 0.00.
Car 2 arrives at the carwash at 0.00.
Car 3 arrives at the carwash at 0.00.
Car 0 enters the carwash at 0.00.
Car 1 enters the carwash at 0.00.
Car 4 arrives at the carwash at 5.00.
Carwash removed 97% of Car 0's dirt.
Carwash removed 67% of Car 1's dirt.
Car 0 leaves the carwash at 5.00.
Car 1 leaves the carwash at 5.00.
Car 2 enters the carwash at 5.00.
Car 3 enters the carwash at 5.00.
Car 5 arrives at the carwash at 10.00.
Carwash removed 64% of Car 2's dirt.
Carwash removed 58% of Car 3's dirt.
Car 2 leaves the carwash at 10.00.
Car 3 leaves the carwash at 10.00.
Car 4 enters the carwash at 10.00.
Car 5 enters the carwash at 10.00.
Carwash removed 97% of Car 4's dirt.
Carwash removed 56% of Car 5's dirt.
Car 4 leaves the carwash at 15.00.
Car 5 leaves the carwash at 15.00.
Car 6 arrives at the carwash at 16.00.
Car 6 enters the carwash at 16.00.

Machine Shop

Covers:

• Interrupts

• Resources: PreemptiveResource

This example comprises a workshop with n identical machines. A stream of jobs (enough to keep the machines busy)
arrives. Each machine breaks down periodically. Repairs are carried out by one repairman. The repairman has other,
less important tasks to perform, too. Broken machines preempt theses tasks. The repairman continues them when he
is done with the machine repair. The workshop works continuously.

A machine has two processes: working implements the actual behaviour of the machine (producing parts).
break_machine periodically interrupts the working process to simulate the machine failure.

4.10. All examples 46

SimPy Documentation, Versão 3.0.10

The repairman’s other job is also a process (implemented by other_job). The repairman itself is a
PreemptiveResource with a capacity of 1. The machine repairing has a priority of 1, while the other job has a
priority of 2 (the smaller the number, the higher the priority).

"""
Machine shop example

Covers:

- Interrupts
- Resources: PreemptiveResource

Scenario:
A workshop has *n* identical machines. A stream of jobs (enough to
keep the machines busy) arrives. Each machine breaks down
periodically. Repairs are carried out by one repairman. The repairman
has other, less important tasks to perform, too. Broken machines
preempt theses tasks. The repairman continues them when he is done
with the machine repair. The workshop works continuously.

"""
import random

import simpy

RANDOM_SEED = 42
PT_MEAN = 10.0 # Avg. processing time in minutes
PT_SIGMA = 2.0 # Sigma of processing time
MTTF = 300.0 # Mean time to failure in minutes
BREAK_MEAN = 1 / MTTF # Param. for expovariate distribution
REPAIR_TIME = 30.0 # Time it takes to repair a machine in minutes
JOB_DURATION = 30.0 # Duration of other jobs in minutes
NUM_MACHINES = 10 # Number of machines in the machine shop
WEEKS = 4 # Simulation time in weeks
SIM_TIME = WEEKS * 7 * 24 * 60 # Simulation time in minutes

def time_per_part():
"""Return actual processing time for a concrete part."""
return random.normalvariate(PT_MEAN, PT_SIGMA)

def time_to_failure():
"""Return time until next failure for a machine."""
return random.expovariate(BREAK_MEAN)

class Machine(object):
"""A machine produces parts and my get broken every now and then.

If it breaks, it requests a *repairman* and continues the production
after the it is repaired.

A machine has a *name* and a numberof *parts_made* thus far.

"""
def __init__(self, env, name, repairman):

self.env = env

4.10. All examples 47

SimPy Documentation, Versão 3.0.10

self.name = name
self.parts_made = 0
self.broken = False

Start "working" and "break_machine" processes for this machine.
self.process = env.process(self.working(repairman))
env.process(self.break_machine())

def working(self, repairman):
"""Produce parts as long as the simulation runs.

While making a part, the machine may break multiple times.
Request a repairman when this happens.

"""
while True:

Start making a new part
done_in = time_per_part()
while done_in:

try:
Working on the part
start = self.env.now
yield self.env.timeout(done_in)
done_in = 0 # Set to 0 to exit while loop.

except simpy.Interrupt:
self.broken = True
done_in -= self.env.now - start # How much time left?

Request a repairman. This will preempt its "other_job".
with repairman.request(priority=1) as req:

yield req
yield self.env.timeout(REPAIR_TIME)

self.broken = False

Part is done.
self.parts_made += 1

def break_machine(self):
"""Break the machine every now and then."""
while True:

yield self.env.timeout(time_to_failure())
if not self.broken:

Only break the machine if it is currently working.
self.process.interrupt()

def other_jobs(env, repairman):
"""The repairman's other (unimportant) job."""
while True:

Start a new job
done_in = JOB_DURATION
while done_in:

Retry the job until it is done.
It's priority is lower than that of machine repairs.
with repairman.request(priority=2) as req:

yield req

4.10. All examples 48

SimPy Documentation, Versão 3.0.10

try:
start = env.now
yield env.timeout(done_in)
done_in = 0

except simpy.Interrupt:
done_in -= env.now - start

Setup and start the simulation
print('Machine shop')
random.seed(RANDOM_SEED) # This helps reproducing the results

Create an environment and start the setup process
env = simpy.Environment()
repairman = simpy.PreemptiveResource(env, capacity=1)
machines = [Machine(env, 'Machine %d' % i, repairman)

for i in range(NUM_MACHINES)]
env.process(other_jobs(env, repairman))

Execute!
env.run(until=SIM_TIME)

Analyis/results
print('Machine shop results after %s weeks' % WEEKS)
for machine in machines:

print('%s made %d parts.' % (machine.name, machine.parts_made))

The simulation’s output:

Machine shop
Machine shop results after 4 weeks
Machine 0 made 3251 parts.
Machine 1 made 3273 parts.
Machine 2 made 3242 parts.
Machine 3 made 3343 parts.
Machine 4 made 3387 parts.
Machine 5 made 3244 parts.
Machine 6 made 3269 parts.
Machine 7 made 3185 parts.
Machine 8 made 3302 parts.
Machine 9 made 3279 parts.

Movie Renege

Covers:

• Resources: Resource

• Condition events

• Shared events

This examples models a movie theater with one ticket counter selling tickets for three movies (next show only). People
arrive at random times and triy to buy a random number (1–6) tickets for a random movie. When a movie is sold out,
all people waiting to buy a ticket for that movie renege (leave the queue).

The movie theater is just a container for all the related data (movies, the counter, tickets left, collected data, ...). The
counter is a Resource with a capacity of one.

4.10. All examples 49

SimPy Documentation, Versão 3.0.10

The moviegoer process starts waiting until either it’s his turn (it acquires the counter resource) or until the sold out
signal is triggered. If the latter is the case it reneges (leaves the queue). If it gets to the counter, it tries to buy some
tickets. This might not be successful, e.g. if the process tries to buy 5 tickets but only 3 are left. If less then two tickets
are left after the ticket purchase, the sold out signal is triggered.

Moviegoers are generated by the customer arrivals process. It also chooses a movie and the number of tickets for the
moviegoer.

"""
Movie renege example

Covers:

- Resources: Resource
- Condition events
- Shared events

Scenario:
A movie theatre has one ticket counter selling tickets for three
movies (next show only). When a movie is sold out, all people waiting
to buy tickets for that movie renege (leave queue).

"""
import collections
import random

import simpy

RANDOM_SEED = 42
TICKETS = 50 # Number of tickets per movie
SIM_TIME = 120 # Simulate until

def moviegoer(env, movie, num_tickets, theater):
"""A moviegoer tries to by a number of tickets (*num_tickets*) for
a certain *movie* in a *theater*.

If the movie becomes sold out, she leaves the theater. If she gets
to the counter, she tries to buy a number of tickets. If not enough
tickets are left, she argues with the teller and leaves.

If at most one ticket is left after the moviegoer bought her
tickets, the *sold out* event for this movie is triggered causing
all remaining moviegoers to leave.

"""
with theater.counter.request() as my_turn:

Wait until its our turn or until the movie is sold out
result = yield my_turn | theater.sold_out[movie]

Check if it's our turn of if movie is sold out
if my_turn not in result:

theater.num_renegers[movie] += 1
env.exit()

Check if enough tickets left.
if theater.available[movie] < num_tickets:

Moviegoer leaves after some discussion

4.10. All examples 50

SimPy Documentation, Versão 3.0.10

yield env.timeout(0.5)
env.exit()

Buy tickets
theater.available[movie] -= num_tickets
if theater.available[movie] < 2:

Trigger the "sold out" event for the movie
theater.sold_out[movie].succeed()
theater.when_sold_out[movie] = env.now
theater.available[movie] = 0

yield env.timeout(1)

def customer_arrivals(env, theater):
"""Create new *moviegoers* until the sim time reaches 120."""
while True:

yield env.timeout(random.expovariate(1 / 0.5))

movie = random.choice(theater.movies)
num_tickets = random.randint(1, 6)
if theater.available[movie]:

env.process(moviegoer(env, movie, num_tickets, theater))

Theater = collections.namedtuple('Theater', 'counter, movies, available, '
'sold_out, when_sold_out, '
'num_renegers')

Setup and start the simulation
print('Movie renege')
random.seed(RANDOM_SEED)
env = simpy.Environment()

Create movie theater
counter = simpy.Resource(env, capacity=1)
movies = ['Python Unchained', 'Kill Process', 'Pulp Implementation']
available = {movie: TICKETS for movie in movies}
sold_out = {movie: env.event() for movie in movies}
when_sold_out = {movie: None for movie in movies}
num_renegers = {movie: 0 for movie in movies}
theater = Theater(counter, movies, available, sold_out, when_sold_out,

num_renegers)

Start process and run
env.process(customer_arrivals(env, theater))
env.run(until=SIM_TIME)

Analysis/results
for movie in movies:

if theater.sold_out[movie]:
print('Movie "%s" sold out %.1f minutes after ticket counter '

'opening.' % (movie, theater.when_sold_out[movie]))
print(' Number of people leaving queue when film sold out: %s' %

theater.num_renegers[movie])

The simulation’s output:

4.10. All examples 51

SimPy Documentation, Versão 3.0.10

Movie renege
Movie "Python Unchained" sold out 38.0 minutes after ticket counter opening.

Number of people leaving queue when film sold out: 16
Movie "Kill Process" sold out 43.0 minutes after ticket counter opening.

Number of people leaving queue when film sold out: 5
Movie "Pulp Implementation" sold out 28.0 minutes after ticket counter opening.

Number of people leaving queue when film sold out: 5

Gas Station Refueling

Covers:

• Resources: Resource

• Resources: Container

• Waiting for other processes

This examples models a gas station and cars that arrive at the station for refueling.

The gas station has a limited number of fuel pumps and a fuel tank that is shared between the fuel pumps. The gas
station is thus modeled as Resource. The shared fuel tank is modeled with a Container.

Vehicles arriving at the gas station first request a fuel pump from the station. Once they acquire one, they try to take
the desired amount of fuel from the fuel pump. They leave when they are done.

The gas stations fuel level is regularly monitored by gas station control. When the level drops below a certain thresh-
old, a tank truck is called to refuel the gas station itself.

"""
Gas Station Refueling example

Covers:

- Resources: Resource
- Resources: Container
- Waiting for other processes

Scenario:
A gas station has a limited number of gas pumps that share a common
fuel reservoir. Cars randomly arrive at the gas station, request one
of the fuel pumps and start refueling from that reservoir.

A gas station control process observes the gas station's fuel level
and calls a tank truck for refueling if the station's level drops
below a threshold.

"""
import itertools
import random

import simpy

RANDOM_SEED = 42
GAS_STATION_SIZE = 200 # liters
THRESHOLD = 10 # Threshold for calling the tank truck (in %)
FUEL_TANK_SIZE = 50 # liters
FUEL_TANK_LEVEL = [5, 25] # Min/max levels of fuel tanks (in liters)

4.10. All examples 52

SimPy Documentation, Versão 3.0.10

REFUELING_SPEED = 2 # liters / second
TANK_TRUCK_TIME = 300 # Seconds it takes the tank truck to arrive
T_INTER = [30, 300] # Create a car every [min, max] seconds
SIM_TIME = 1000 # Simulation time in seconds

def car(name, env, gas_station, fuel_pump):
"""A car arrives at the gas station for refueling.

It requests one of the gas station's fuel pumps and tries to get the
desired amount of gas from it. If the stations reservoir is
depleted, the car has to wait for the tank truck to arrive.

"""
fuel_tank_level = random.randint(*FUEL_TANK_LEVEL)
print('%s arriving at gas station at %.1f' % (name, env.now))
with gas_station.request() as req:

start = env.now
Request one of the gas pumps
yield req

Get the required amount of fuel
liters_required = FUEL_TANK_SIZE - fuel_tank_level
yield fuel_pump.get(liters_required)

The "actual" refueling process takes some time
yield env.timeout(liters_required / REFUELING_SPEED)

print('%s finished refueling in %.1f seconds.' % (name,
env.now - start))

def gas_station_control(env, fuel_pump):
"""Periodically check the level of the *fuel_pump* and call the tank
truck if the level falls below a threshold."""
while True:

if fuel_pump.level / fuel_pump.capacity * 100 < THRESHOLD:
We need to call the tank truck now!
print('Calling tank truck at %d' % env.now)
Wait for the tank truck to arrive and refuel the station
yield env.process(tank_truck(env, fuel_pump))

yield env.timeout(10) # Check every 10 seconds

def tank_truck(env, fuel_pump):
"""Arrives at the gas station after a certain delay and refuels it."""
yield env.timeout(TANK_TRUCK_TIME)
print('Tank truck arriving at time %d' % env.now)
ammount = fuel_pump.capacity - fuel_pump.level
print('Tank truck refuelling %.1f liters.' % ammount)
yield fuel_pump.put(ammount)

def car_generator(env, gas_station, fuel_pump):
"""Generate new cars that arrive at the gas station."""
for i in itertools.count():

yield env.timeout(random.randint(*T_INTER))

4.10. All examples 53

SimPy Documentation, Versão 3.0.10

env.process(car('Car %d' % i, env, gas_station, fuel_pump))

Setup and start the simulation
print('Gas Station refuelling')
random.seed(RANDOM_SEED)

Create environment and start processes
env = simpy.Environment()
gas_station = simpy.Resource(env, 2)
fuel_pump = simpy.Container(env, GAS_STATION_SIZE, init=GAS_STATION_SIZE)
env.process(gas_station_control(env, fuel_pump))
env.process(car_generator(env, gas_station, fuel_pump))

Execute!
env.run(until=SIM_TIME)

The simulation’s output:

Gas Station refuelling
Car 0 arriving at gas station at 87.0
Car 0 finished refueling in 18.5 seconds.
Car 1 arriving at gas station at 129.0
Car 1 finished refueling in 19.0 seconds.
Car 2 arriving at gas station at 284.0
Car 2 finished refueling in 21.0 seconds.
Car 3 arriving at gas station at 385.0
Car 3 finished refueling in 13.5 seconds.
Car 4 arriving at gas station at 459.0
Calling tank truck at 460
Car 4 finished refueling in 22.0 seconds.
Car 5 arriving at gas station at 705.0
Car 6 arriving at gas station at 750.0
Tank truck arriving at time 760
Tank truck refuelling 188.0 liters.
Car 6 finished refueling in 29.0 seconds.
Car 5 finished refueling in 76.5 seconds.
Car 7 arriving at gas station at 891.0
Car 7 finished refueling in 13.0 seconds.

Process Communication

Covers:

• Resources: Store

This example shows how to interconnect simulation model elements together using “resources.Store” for one-to-one,
and many-to-one asynchronous processes. For one-to-many a simple BroadCastPipe class is constructed from Store.

When Useful: When a consumer process does not always wait on a generating process and these processes run
asynchronously. This example shows how to create a buffer and also tell is the consumer process was late
yielding to the event from a generating process.

This is also useful when some information needs to be broadcast to many receiving processes

Finally, using pipes can simplify how processes are interconnected to each other in a simulation model.

Example By: Keith Smith

4.10. All examples 54

SimPy Documentation, Versão 3.0.10

"""
Process communication example

Covers:

- Resources: Store

Scenario:
This example shows how to interconnect simulation model elements
together using :class:`~simpy.resources.store.Store` for one-to-one,
and many-to-one asynchronous processes. For one-to-many a simple
BroadCastPipe class is constructed from Store.

When Useful:
When a consumer process does not always wait on a generating process
and these processes run asynchronously. This example shows how to
create a buffer and also tell is the consumer process was late
yielding to the event from a generating process.

This is also useful when some information needs to be broadcast to
many receiving processes

Finally, using pipes can simplify how processes are interconnected to
each other in a simulation model.

Example By:
Keith Smith

"""
import random

import simpy

RANDOM_SEED = 42
SIM_TIME = 100

class BroadcastPipe(object):
"""A Broadcast pipe that allows one process to send messages to many.

This construct is useful when message consumers are running at
different rates than message generators and provides an event
buffering to the consuming processes.

The parameters are used to create a new
:class:`~simpy.resources.store.Store` instance each time
:meth:`get_output_conn()` is called.

"""
def __init__(self, env, capacity=simpy.core.Infinity):

self.env = env
self.capacity = capacity
self.pipes = []

def put(self, value):
"""Broadcast a *value* to all receivers."""
if not self.pipes:

4.10. All examples 55

SimPy Documentation, Versão 3.0.10

raise RuntimeError('There are no output pipes.')
events = [store.put(value) for store in self.pipes]
return self.env.all_of(events) # Condition event for all "events"

def get_output_conn(self):
"""Get a new output connection for this broadcast pipe.

The return value is a :class:`~simpy.resources.store.Store`.

"""
pipe = simpy.Store(self.env, capacity=self.capacity)
self.pipes.append(pipe)
return pipe

def message_generator(name, env, out_pipe):
"""A process which randomly generates messages."""
while True:

wait for next transmission
yield env.timeout(random.randint(6, 10))

messages are time stamped to later check if the consumer was
late getting them. Note, using event.triggered to do this may
result in failure due to FIFO nature of simulation yields.
(i.e. if at the same env.now, message_generator puts a message
in the pipe first and then message_consumer gets from pipe,
the event.triggered will be True in the other order it will be
False
msg = (env.now, '%s says hello at %d' % (name, env.now))
out_pipe.put(msg)

def message_consumer(name, env, in_pipe):
"""A process which consumes messages."""
while True:

Get event for message pipe
msg = yield in_pipe.get()

if msg[0] < env.now:
if message was already put into pipe, then
message_consumer was late getting to it. Depending on what
is being modeled this, may, or may not have some
significance
print('LATE Getting Message: at time %d: %s received message: %s' %

(env.now, name, msg[1]))

else:
message_consumer is synchronized with message_generator
print('at time %d: %s received message: %s.' %

(env.now, name, msg[1]))

Process does some other work, which may result in missing messages
yield env.timeout(random.randint(4, 8))

Setup and start the simulation
print('Process communication')
random.seed(RANDOM_SEED)

4.10. All examples 56

SimPy Documentation, Versão 3.0.10

env = simpy.Environment()

For one-to-one or many-to-one type pipes, use Store
pipe = simpy.Store(env)
env.process(message_generator('Generator A', env, pipe))
env.process(message_consumer('Consumer A', env, pipe))

print('\nOne-to-one pipe communication\n')
env.run(until=SIM_TIME)

For one-to many use BroadcastPipe
(Note: could also be used for one-to-one,many-to-one or many-to-many)
env = simpy.Environment()
bc_pipe = BroadcastPipe(env)

env.process(message_generator('Generator A', env, bc_pipe))
env.process(message_consumer('Consumer A', env, bc_pipe.get_output_conn()))
env.process(message_consumer('Consumer B', env, bc_pipe.get_output_conn()))

print('\nOne-to-many pipe communication\n')
env.run(until=SIM_TIME)

The simulation’s output:

Process communication

One-to-one pipe communication

at time 6: Consumer A received message: Generator A says hello at 6.
at time 12: Consumer A received message: Generator A says hello at 12.
at time 19: Consumer A received message: Generator A says hello at 19.
at time 26: Consumer A received message: Generator A says hello at 26.
at time 36: Consumer A received message: Generator A says hello at 36.
at time 46: Consumer A received message: Generator A says hello at 46.
at time 52: Consumer A received message: Generator A says hello at 52.
at time 58: Consumer A received message: Generator A says hello at 58.
LATE Getting Message: at time 66: Consumer A received message: Generator A says hello at 65
at time 75: Consumer A received message: Generator A says hello at 75.
at time 85: Consumer A received message: Generator A says hello at 85.
at time 95: Consumer A received message: Generator A says hello at 95.

One-to-many pipe communication

at time 10: Consumer A received message: Generator A says hello at 10.
at time 10: Consumer B received message: Generator A says hello at 10.
at time 18: Consumer A received message: Generator A says hello at 18.
at time 18: Consumer B received message: Generator A says hello at 18.
at time 27: Consumer A received message: Generator A says hello at 27.
at time 27: Consumer B received message: Generator A says hello at 27.
at time 34: Consumer A received message: Generator A says hello at 34.
at time 34: Consumer B received message: Generator A says hello at 34.
at time 40: Consumer A received message: Generator A says hello at 40.
LATE Getting Message: at time 41: Consumer B received message: Generator A says hello at 40
at time 46: Consumer A received message: Generator A says hello at 46.
LATE Getting Message: at time 47: Consumer B received message: Generator A says hello at 46
at time 56: Consumer A received message: Generator A says hello at 56.
at time 56: Consumer B received message: Generator A says hello at 56.
at time 65: Consumer A received message: Generator A says hello at 65.

4.10. All examples 57

SimPy Documentation, Versão 3.0.10

at time 65: Consumer B received message: Generator A says hello at 65.
at time 74: Consumer A received message: Generator A says hello at 74.
at time 74: Consumer B received message: Generator A says hello at 74.
at time 82: Consumer A received message: Generator A says hello at 82.
at time 82: Consumer B received message: Generator A says hello at 82.
at time 92: Consumer A received message: Generator A says hello at 92.
at time 92: Consumer B received message: Generator A says hello at 92.
at time 98: Consumer B received message: Generator A says hello at 98.
at time 98: Consumer A received message: Generator A says hello at 98.

Event Latency

Covers:

• Resources: Store

This example shows how to separate the time delay of events between processes from the processes themselves.

When Useful: When modeling physical things such as cables, RF propagation, etc. it better encapsulation to keep
this propagation mechanism outside of the sending and receiving processes.

Can also be used to interconnect processes sending messages

Example by: Keith Smith

"""
Event Latency example

Covers:

- Resources: Store

Scenario:
This example shows how to separate the time delay of events between
processes from the processes themselves.

When Useful:
When modeling physical things such as cables, RF propagation, etc. it
better encapsulation to keep this propagation mechanism outside of the
sending and receiving processes.

Can also be used to interconnect processes sending messages

Example by:
Keith Smith

"""
import simpy

SIM_DURATION = 100

class Cable(object):
"""This class represents the propagation through a cable."""
def __init__(self, env, delay):

self.env = env
self.delay = delay
self.store = simpy.Store(env)

4.10. All examples 58

SimPy Documentation, Versão 3.0.10

def latency(self, value):
yield self.env.timeout(self.delay)
self.store.put(value)

def put(self, value):
self.env.process(self.latency(value))

def get(self):
return self.store.get()

def sender(env, cable):
"""A process which randomly generates messages."""
while True:

wait for next transmission
yield env.timeout(5)
cable.put('Sender sent this at %d' % env.now)

def receiver(env, cable):
"""A process which consumes messages."""
while True:

Get event for message pipe
msg = yield cable.get()
print('Received this at %d while %s' % (env.now, msg))

Setup and start the simulation
print('Event Latency')
env = simpy.Environment()

cable = Cable(env, 10)
env.process(sender(env, cable))
env.process(receiver(env, cable))

env.run(until=SIM_DURATION)

The simulation’s output:

Event Latency
Received this at 15 while Sender sent this at 5
Received this at 20 while Sender sent this at 10
Received this at 25 while Sender sent this at 15
Received this at 30 while Sender sent this at 20
Received this at 35 while Sender sent this at 25
Received this at 40 while Sender sent this at 30
Received this at 45 while Sender sent this at 35
Received this at 50 while Sender sent this at 40
Received this at 55 while Sender sent this at 45
Received this at 60 while Sender sent this at 50
Received this at 65 while Sender sent this at 55
Received this at 70 while Sender sent this at 60
Received this at 75 while Sender sent this at 65
Received this at 80 while Sender sent this at 70
Received this at 85 while Sender sent this at 75
Received this at 90 while Sender sent this at 80
Received this at 95 while Sender sent this at 85

4.10. All examples 59

SimPy Documentation, Versão 3.0.10

You have ideas for better examples? Please send them to our mainling list or make a pull request on bitbucket.

4.10. All examples 60

https://lists.sourceforge.net/lists/listinfo/simpy-users
https://bitbucket.org/simpy/simpy

CHAPTER 5

API Reference

The API reference provides detailed descriptions of SimPy’s classes and functions. It should be helpful if you plan to
extend SimPy with custom components.

simpy

The simpy module aggregates SimPy’s most used components into a single namespace. This is purely for conve-
nience. You can of course also access everything (and more!) via their actual submodules.

The following tables list all of the available components in this module.

Environments

Environment([initial_time]) Execution environment for an event-based simulation.
RealtimeEnvironment([initial_time, factor, ...]) Execution environment for an event-based simulation which is synchronized with the real-time (also known as wall-clock time).

Events

Event(env) An event that may happen at some point in time.
Timeout(env, delay[, value]) A Event that gets triggered after a delay has passed.
Process(env, generator) Process an event yielding generator.
AllOf(env, events) A Condition event that is triggered if all of a list of events have been successfully triggered.
AnyOf(env, events) A Condition event that is triggered if any of a list of events has been successfully triggered.
Interrupt(cause) Exception thrown into a process if it is interrupted (see interrupt()).

Resources

Resource(env[, capacity]) Resource with capacity of usage slots that can be requested by processes.
PriorityResource(env[, capacity]) A Resource supporting prioritized requests.
PreemptiveResource(env[, capacity]) A PriorityResource with preemption.
Container(env[, capacity, init]) Resource containing up to capacity of matter which may either be continuous (like water) or discrete (like apples).
Store(env[, capacity]) Resource with capacity slots for storing arbitrary objects.
PriorityItem Wrap an arbitrary item with an orderable priority.

Continuação na próxima página

61

SimPy Documentation, Versão 3.0.10

Table 5.3 – continuação da página anterior
PriorityStore(env[, capacity]) Resource with capacity slots for storing objects in priority order.
FilterStore(env[, capacity]) Resource with capacity slots for storing arbitrary objects supporting filtered get requests.

Exceptions

SimPyException Base class for all SimPy specific exceptions.
Interrupt(cause) Exception thrown into a process if it is interrupted (see interrupt()).
StopProcess(value) Raised to stop a SimPy process (similar to StopIteration).

simpy.core — SimPy’s core components

Core components for event-discrete simulation environments.

class simpy.core.BaseEnvironment
Base class for event processing environments.

An implementation must at least provide the means to access the current time of the environment (see now) and
to schedule (see schedule()) events as well as processing them (see step().

The class is meant to be subclassed for different execution environments. For example, SimPy defines a
Environment for simulations with a virtual time and and a RealtimeEnvironment that schedules and
executes events in real (e.g., wallclock) time.

now
The current time of the environment.

active_process
The currently active process of the environment.

schedule(event, priority=1, delay=0)
Schedule an event with a given priority and a delay.

There are two default priority values, URGENT and NORMAL.

step()
Processes the next event.

run(until=None)
Executes step() until the given criterion until is met.

•If it is None (which is the default), this method will return when there are no further events to be
processed.

•If it is an Event, the method will continue stepping until this event has been triggered and will return
its value. Raises a RuntimeError if there are no further events to be processed and the until event
was not triggered.

•If it is a number, the method will continue stepping until the environment’s time reaches until.

exit(value=None)
Stop the current process, optionally providing a value.

This is a convenience function provided for Python versions prior to 3.3. From Python 3.3, you can instead
use return value in a process.

5.2. simpy.core — SimPy’s core components 62

http://docs.python.org/3/library/exceptions.html#StopIteration
http://docs.python.org/3/library/exceptions.html#RuntimeError

SimPy Documentation, Versão 3.0.10

class simpy.core.Environment(initial_time=0)
Execution environment for an event-based simulation. The passing of time is simulated by stepping from event
to event.

You can provide an initial_time for the environment. By default, it starts at 0.

This class also provides aliases for common event types, for example process, timeout and event.

now
The current simulation time.

active_process
The currently active process of the environment.

process(generator)
Create a new Process instance for generator.

timeout(delay, value=None)
Return a new Timeout event with a delay and, optionally, a value.

event()
Return a new Event instance. Yielding this event suspends a process until another process triggers the
event.

all_of(events)
Return a new AllOf condition for a list of events.

any_of(events)
Return a new AnyOf condition for a list of events.

exit(value=None)
Stop the current process, optionally providing a value.

This is a convenience function provided for Python versions prior to 3.3. From Python 3.3, you can instead
use return value in a process.

schedule(event, priority=1, delay=0)
Schedule an event with a given priority and a delay.

peek()
Get the time of the next scheduled event. Return Infinity if there is no further event.

step()
Process the next event.

Raise an EmptySchedule if no further events are available.

run(until=None)
Executes step() until the given criterion until is met.

•If it is None (which is the default), this method will return when there are no further events to be
processed.

•If it is an Event, the method will continue stepping until this event has been triggered and will return
its value. Raises a RuntimeError if there are no further events to be processed and the until event
was not triggered.

•If it is a number, the method will continue stepping until the environment’s time reaches until.

class simpy.core.BoundClass(cls)
Allows classes to behave like methods.

The __get__() descriptor is basically identical to function.__get__() and binds the first argument of
the cls to the descriptor instance.

5.2. simpy.core — SimPy’s core components 63

http://docs.python.org/3/library/exceptions.html#RuntimeError

SimPy Documentation, Versão 3.0.10

static bind_early(instance)
Bind all BoundClass attributes of the instance’s class to the instance itself to increase performance.

class simpy.core.EmptySchedule
Thrown by an Environment if there are no further events to be processed.

simpy.core.Infinity = inf
Convenience alias for infinity

simpy.exceptions — Exception types used by SimPy

SimPy specific exeptions.

exception simpy.exceptions.SimPyException
Base class for all SimPy specific exceptions.

exception simpy.exceptions.Interrupt(cause)
Exception thrown into a process if it is interrupted (see interrupt()).

cause provides the reason for the interrupt, if any.

If a process is interrupted concurrently, all interrupts will be thrown into the process in the same order as they
occurred.

cause
The cause of the interrupt or None if no cause was provided.

exception simpy.exceptions.StopProcess(value)
Raised to stop a SimPy process (similar to StopIteration).

In Python 2, a return value inside generator functions is not allowed. The fall-back was raising
StopIteration(value) instead. However, this is deprecated now, so we need a custom exception type for
this.

value
The process’ return value.

simpy.events — Core event types

This module contains the basic event types used in SimPy.

The base class for all events is Event. Though it can be directly used, there are several specialized subclasses of it.

Event(env) An event that may happen at some point in time.
Timeout(env, delay[, value]) A Event that gets triggered after a delay has passed.
Process(env, generator) Process an event yielding generator.
AnyOf(env, events) A Condition event that is triggered if any of a list of events has been successfully triggered.
AllOf(env, events) A Condition event that is triggered if all of a list of events have been successfully triggered.

simpy.events.PENDING = object()
Unique object to identify pending values of events.

simpy.events.URGENT = 0
Priority of interrupts and process initialization events.

simpy.events.NORMAL = 1

5.4. simpy.events — Core event types 64

http://docs.python.org/3/library/exceptions.html#StopIteration
https://www.python.org/dev/peps/pep-0479/

SimPy Documentation, Versão 3.0.10

Default priority used by events.

class simpy.events.Event(env)
An event that may happen at some point in time.

An event

•may happen (triggered is False),

•is going to happen (triggered is True) or

•has happened (processed is True).

Every event is bound to an environment env and is initially not triggered. Events are scheduled for processing
by the environment after they are triggered by either succeed(), fail() or trigger(). These methods
also set the ok flag and the value of the event.

An event has a list of callbacks. A callback can be any callable. Once an event gets processed, all callbacks
will be invoked with the event as the single argument. Callbacks can check if the event was successful by
examining ok and do further processing with the value it has produced.

Failed events are never silently ignored and will raise an exception upon being processed. If a callback handles
an exception, it must set defused to True to prevent this.

This class also implements __and__() (&) and __or__() (|). If you concatenate two events using one of
these operators, a Condition event is generated that lets you wait for both or one of them.

env = None
The Environment the event lives in.

callbacks = None
List of functions that are called when the event is processed.

triggered
Becomes True if the event has been triggered and its callbacks are about to be invoked.

processed
Becomes True if the event has been processed (e.g., its callbacks have been invoked).

ok
Becomes True when the event has been triggered successfully.

A “successful” event is one triggered with succeed().

Levanta AttributeError – if accessed before the event is triggered.

defused
Becomes True when the failed event’s exception is “defused”.

When an event fails (i.e. with fail()), the failed event’s value is an exception that will be re-raised when
the Environment processes the event (i.e. in step()).

It is also possible for the failed event’s exception to be defused by setting defused to True from an
event callback. Doing so prevents the event’s exception from being re-raised when the event is processed
by the Environment.

value
The value of the event if it is available.

The value is available when the event has been triggered.

Raises AttributeError if the value is not yet available.

trigger(event)
Trigger the event with the state and value of the provided event. Return self (this event instance).

5.4. simpy.events — Core event types 65

http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#AttributeError

SimPy Documentation, Versão 3.0.10

This method can be used directly as a callback function to trigger chain reactions.

succeed(value=None)
Set the event’s value, mark it as successful and schedule it for processing by the environment. Returns the
event instance.

Raises RuntimeError if this event has already been triggerd.

fail(exception)
Set exception as the events value, mark it as failed and schedule it for processing by the environment.
Returns the event instance.

Raises ValueError if exception is not an Exception.

Raises RuntimeError if this event has already been triggered.

class simpy.events.Timeout(env, delay, value=None)
A Event that gets triggered after a delay has passed.

This event is automatically triggered when it is created.

defused
Becomes True when the failed event’s exception is “defused”.

When an event fails (i.e. with fail()), the failed event’s value is an exception that will be re-raised when
the Environment processes the event (i.e. in step()).

It is also possible for the failed event’s exception to be defused by setting defused to True from an
event callback. Doing so prevents the event’s exception from being re-raised when the event is processed
by the Environment.

fail(exception)
Set exception as the events value, mark it as failed and schedule it for processing by the environment.
Returns the event instance.

Raises ValueError if exception is not an Exception.

Raises RuntimeError if this event has already been triggered.

ok
Becomes True when the event has been triggered successfully.

A “successful” event is one triggered with succeed().

Levanta AttributeError – if accessed before the event is triggered.

processed
Becomes True if the event has been processed (e.g., its callbacks have been invoked).

succeed(value=None)
Set the event’s value, mark it as successful and schedule it for processing by the environment. Returns the
event instance.

Raises RuntimeError if this event has already been triggerd.

trigger(event)
Trigger the event with the state and value of the provided event. Return self (this event instance).

This method can be used directly as a callback function to trigger chain reactions.

triggered
Becomes True if the event has been triggered and its callbacks are about to be invoked.

value
The value of the event if it is available.

5.4. simpy.events — Core event types 66

http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#RuntimeError

SimPy Documentation, Versão 3.0.10

The value is available when the event has been triggered.

Raises AttributeError if the value is not yet available.

class simpy.events.Initialize(env, process)
Initializes a process. Only used internally by Process.

This event is automatically triggered when it is created.

defused
Becomes True when the failed event’s exception is “defused”.

When an event fails (i.e. with fail()), the failed event’s value is an exception that will be re-raised when
the Environment processes the event (i.e. in step()).

It is also possible for the failed event’s exception to be defused by setting defused to True from an
event callback. Doing so prevents the event’s exception from being re-raised when the event is processed
by the Environment.

fail(exception)
Set exception as the events value, mark it as failed and schedule it for processing by the environment.
Returns the event instance.

Raises ValueError if exception is not an Exception.

Raises RuntimeError if this event has already been triggered.

ok
Becomes True when the event has been triggered successfully.

A “successful” event is one triggered with succeed().

Levanta AttributeError – if accessed before the event is triggered.

processed
Becomes True if the event has been processed (e.g., its callbacks have been invoked).

succeed(value=None)
Set the event’s value, mark it as successful and schedule it for processing by the environment. Returns the
event instance.

Raises RuntimeError if this event has already been triggerd.

trigger(event)
Trigger the event with the state and value of the provided event. Return self (this event instance).

This method can be used directly as a callback function to trigger chain reactions.

triggered
Becomes True if the event has been triggered and its callbacks are about to be invoked.

value
The value of the event if it is available.

The value is available when the event has been triggered.

Raises AttributeError if the value is not yet available.

class simpy.events.Interruption(process, cause)
Immediately schedules an Interrupt exception with the given cause to be thrown into process.

This event is automatically triggered when it is created.

defused
Becomes True when the failed event’s exception is “defused”.

5.4. simpy.events — Core event types 67

http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError

SimPy Documentation, Versão 3.0.10

When an event fails (i.e. with fail()), the failed event’s value is an exception that will be re-raised when
the Environment processes the event (i.e. in step()).

It is also possible for the failed event’s exception to be defused by setting defused to True from an
event callback. Doing so prevents the event’s exception from being re-raised when the event is processed
by the Environment.

fail(exception)
Set exception as the events value, mark it as failed and schedule it for processing by the environment.
Returns the event instance.

Raises ValueError if exception is not an Exception.

Raises RuntimeError if this event has already been triggered.

ok
Becomes True when the event has been triggered successfully.

A “successful” event is one triggered with succeed().

Levanta AttributeError – if accessed before the event is triggered.

processed
Becomes True if the event has been processed (e.g., its callbacks have been invoked).

succeed(value=None)
Set the event’s value, mark it as successful and schedule it for processing by the environment. Returns the
event instance.

Raises RuntimeError if this event has already been triggerd.

trigger(event)
Trigger the event with the state and value of the provided event. Return self (this event instance).

This method can be used directly as a callback function to trigger chain reactions.

triggered
Becomes True if the event has been triggered and its callbacks are about to be invoked.

value
The value of the event if it is available.

The value is available when the event has been triggered.

Raises AttributeError if the value is not yet available.

class simpy.events.Process(env, generator)
Process an event yielding generator.

A generator (also known as a coroutine) can suspend its execution by yielding an event. Process will take
care of resuming the generator with the value of that event once it has happened. The exception of failed events
is thrown into the generator.

Process itself is an event, too. It is triggered, once the generator returns or raises an exception. The value of
the process is the return value of the generator or the exception, respectively.

Nota: Python version prior to 3.3 do not support return statements in generators. You can use
:meth:~simpy.core.Environment.exit() as a workaround.

Processes can be interrupted during their execution by interrupt().

target
The event that the process is currently waiting for.

5.4. simpy.events — Core event types 68

http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError

SimPy Documentation, Versão 3.0.10

Returns None if the process is dead or it is currently being interrupted.

is_alive
True until the process generator exits.

interrupt(cause=None)
Interupt this process optionally providing a cause.

A process cannot be interrupted if it already terminated. A process can also not interrupt itself. Raise a
RuntimeError in these cases.

defused
Becomes True when the failed event’s exception is “defused”.

When an event fails (i.e. with fail()), the failed event’s value is an exception that will be re-raised when
the Environment processes the event (i.e. in step()).

It is also possible for the failed event’s exception to be defused by setting defused to True from an
event callback. Doing so prevents the event’s exception from being re-raised when the event is processed
by the Environment.

fail(exception)
Set exception as the events value, mark it as failed and schedule it for processing by the environment.
Returns the event instance.

Raises ValueError if exception is not an Exception.

Raises RuntimeError if this event has already been triggered.

ok
Becomes True when the event has been triggered successfully.

A “successful” event is one triggered with succeed().

Levanta AttributeError – if accessed before the event is triggered.

processed
Becomes True if the event has been processed (e.g., its callbacks have been invoked).

succeed(value=None)
Set the event’s value, mark it as successful and schedule it for processing by the environment. Returns the
event instance.

Raises RuntimeError if this event has already been triggerd.

trigger(event)
Trigger the event with the state and value of the provided event. Return self (this event instance).

This method can be used directly as a callback function to trigger chain reactions.

triggered
Becomes True if the event has been triggered and its callbacks are about to be invoked.

value
The value of the event if it is available.

The value is available when the event has been triggered.

Raises AttributeError if the value is not yet available.

class simpy.events.Condition(env, evaluate, events)
An event that gets triggered once the condition function evaluate returns True on the given list of events.

5.4. simpy.events — Core event types 69

http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError

SimPy Documentation, Versão 3.0.10

The value of the condition event is an instance of ConditionValue which allows convenient access to the
input events and their values. The ConditionValue will only contain entries for those events that occurred
before the condition is processed.

If one of the events fails, the condition also fails and forwards the exception of the failing event.

The evaluate function receives the list of target events and the number of processed events in this list:
evaluate(events, processed_count). If it returns True, the condition is triggered. The
Condition.all_events() and Condition.any_events() functions are used to implement and (&)
and or (|) for events.

Condition events can be nested.

static all_events(events, count)
An evaluation function that returns True if all events have been triggered.

static any_events(events, count)
An evaluation function that returns True if at least one of events has been triggered.

defused
Becomes True when the failed event’s exception is “defused”.

When an event fails (i.e. with fail()), the failed event’s value is an exception that will be re-raised when
the Environment processes the event (i.e. in step()).

It is also possible for the failed event’s exception to be defused by setting defused to True from an
event callback. Doing so prevents the event’s exception from being re-raised when the event is processed
by the Environment.

fail(exception)
Set exception as the events value, mark it as failed and schedule it for processing by the environment.
Returns the event instance.

Raises ValueError if exception is not an Exception.

Raises RuntimeError if this event has already been triggered.

ok
Becomes True when the event has been triggered successfully.

A “successful” event is one triggered with succeed().

Levanta AttributeError – if accessed before the event is triggered.

processed
Becomes True if the event has been processed (e.g., its callbacks have been invoked).

succeed(value=None)
Set the event’s value, mark it as successful and schedule it for processing by the environment. Returns the
event instance.

Raises RuntimeError if this event has already been triggerd.

trigger(event)
Trigger the event with the state and value of the provided event. Return self (this event instance).

This method can be used directly as a callback function to trigger chain reactions.

triggered
Becomes True if the event has been triggered and its callbacks are about to be invoked.

value
The value of the event if it is available.

The value is available when the event has been triggered.

5.4. simpy.events — Core event types 70

http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#RuntimeError

SimPy Documentation, Versão 3.0.10

Raises AttributeError if the value is not yet available.

class simpy.events.AllOf(env, events)
A Condition event that is triggered if all of a list of events have been successfully triggered. Fails immediately
if any of events failed.

defused
Becomes True when the failed event’s exception is “defused”.

When an event fails (i.e. with fail()), the failed event’s value is an exception that will be re-raised when
the Environment processes the event (i.e. in step()).

It is also possible for the failed event’s exception to be defused by setting defused to True from an
event callback. Doing so prevents the event’s exception from being re-raised when the event is processed
by the Environment.

fail(exception)
Set exception as the events value, mark it as failed and schedule it for processing by the environment.
Returns the event instance.

Raises ValueError if exception is not an Exception.

Raises RuntimeError if this event has already been triggered.

ok
Becomes True when the event has been triggered successfully.

A “successful” event is one triggered with succeed().

Levanta AttributeError – if accessed before the event is triggered.

processed
Becomes True if the event has been processed (e.g., its callbacks have been invoked).

succeed(value=None)
Set the event’s value, mark it as successful and schedule it for processing by the environment. Returns the
event instance.

Raises RuntimeError if this event has already been triggerd.

trigger(event)
Trigger the event with the state and value of the provided event. Return self (this event instance).

This method can be used directly as a callback function to trigger chain reactions.

triggered
Becomes True if the event has been triggered and its callbacks are about to be invoked.

value
The value of the event if it is available.

The value is available when the event has been triggered.

Raises AttributeError if the value is not yet available.

class simpy.events.AnyOf(env, events)
A Condition event that is triggered if any of a list of events has been successfully triggered. Fails immediately
if any of events failed.

defused
Becomes True when the failed event’s exception is “defused”.

When an event fails (i.e. with fail()), the failed event’s value is an exception that will be re-raised when
the Environment processes the event (i.e. in step()).

5.4. simpy.events — Core event types 71

http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError

SimPy Documentation, Versão 3.0.10

It is also possible for the failed event’s exception to be defused by setting defused to True from an
event callback. Doing so prevents the event’s exception from being re-raised when the event is processed
by the Environment.

fail(exception)
Set exception as the events value, mark it as failed and schedule it for processing by the environment.
Returns the event instance.

Raises ValueError if exception is not an Exception.

Raises RuntimeError if this event has already been triggered.

ok
Becomes True when the event has been triggered successfully.

A “successful” event is one triggered with succeed().

Levanta AttributeError – if accessed before the event is triggered.

processed
Becomes True if the event has been processed (e.g., its callbacks have been invoked).

succeed(value=None)
Set the event’s value, mark it as successful and schedule it for processing by the environment. Returns the
event instance.

Raises RuntimeError if this event has already been triggerd.

trigger(event)
Trigger the event with the state and value of the provided event. Return self (this event instance).

This method can be used directly as a callback function to trigger chain reactions.

triggered
Becomes True if the event has been triggered and its callbacks are about to be invoked.

value
The value of the event if it is available.

The value is available when the event has been triggered.

Raises AttributeError if the value is not yet available.

class simpy.events.ConditionValue
Result of a Condition. It supports convenient dict-like access to the triggered events and their values. The
events are ordered by their occurences in the condition.

simpy.resources — Shared resource primitives

SimPy implements three types of resources that can be used to synchronize processes or to model congestion points:

resource Shared resources supporting priorities and preemption.
container Resource for sharing homogeneous matter between processes, either continuous (like water) or discrete (like apples).
store Shared resources for storing a possibly unlimited amount of objects supporting requests for specific objects.

They are derived from the base classes defined in the base module. These classes are also meant to support the
implementation of custom resource types.

5.5. simpy.resources — Shared resource primitives 72

http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#AttributeError

SimPy Documentation, Versão 3.0.10

Resources — simpy.resources.resource

Shared resources supporting priorities and preemption.

These resources can be used to limit the number of processes using them concurrently. A process needs to request
the usage right to a resource. Once the usage right is not needed anymore it has to be released. A gas station can
be modelled as a resource with a limited amount of fuel-pumps. Vehicles arrive at the gas station and request to use
a fuel-pump. If all fuel-pumps are in use, the vehicle needs to wait until one of the users has finished refueling and
releases its fuel-pump.

These resources can be used by a limited number of processes at a time. Processes request these resources to become
a user and have to release them once they are done. For example, a gas station with a limited number of fuel pumps
can be modeled with a Resource. Arriving vehicles request a fuel-pump. Once one is available they refuel. When they
are done, the release the fuel-pump and leave the gas station.

Requesting a resource is modelled as “putting a process’ token into the resources” and releasing a resources corre-
spondingly as “getting a process’ token out of the resource”. Thus, calling request()/release() is equivalent
to calling put()/get(). Note, that releasing a resource will always succeed immediately, no matter if a process is
actually using a resource or not.

Besides Resource, there is a PriorityResource, where processes can define a request priority, and a
PreemptiveResource whose resource users can be preempted by requests with a higher priority.

class simpy.resources.resource.Resource(env, capacity=1)
Resource with capacity of usage slots that can be requested by processes.

If all slots are taken, requests are enqueued. Once a usage request is released, a pending request will be triggered.

The env parameter is the Environment instance the resource is bound to.

users = None
List of Request events for the processes that are currently using the resource.

queue = None
Queue of pending Request events. Alias of put_queue.

count
Number of users currently using the resource.

request
Request a usage slot.

apelido de Request

release
Release a usage slot.

apelido de Release

class simpy.resources.resource.PriorityResource(env, capacity=1)
A Resource supporting prioritized requests.

Pending requests in the queue are sorted in ascending order by their priority (that means lower values are more
important).

PutQueue
Type of the put queue. See put_queue for details.

apelido de SortedQueue

GetQueue
Type of the get queue. See get_queue for details.

apelido de list

5.5. simpy.resources — Shared resource primitives 73

http://docs.python.org/3/library/stdtypes.html#list

SimPy Documentation, Versão 3.0.10

request
Request a usage slot with the given priority.

apelido de PriorityRequest

release
Release a usage slot.

apelido de Release

class simpy.resources.resource.PreemptiveResource(env, capacity=1)
A PriorityResource with preemption.

If a request is preempted, the process of that request will receive an Interrupt with a Preempted instance
as cause.

class simpy.resources.resource.Preempted(by, usage_since, resource)
Cause of an preemption Interrupt containing information about the preemption.

by = None
The preempting simpy.events.Process.

usage_since = None
The simulation time at which the preempted process started to use the resource.

resource = None
The resource which was lost, i.e., caused the preemption.

class simpy.resources.resource.Request(resource)
Request usage of the resource. The event is triggered once access is granted. Subclass of
simpy.resources.base.Put.

If the maximum capacity of users has not yet been reached, the request is triggered immediately. If the maximum
capacity has been reached, the request is triggered once an earlier usage request on the resource is released.

The request is automatically released when the request was created within a with statement.

class simpy.resources.resource.PriorityRequest(resource, priority=0, preempt=True)
Request the usage of resource with a given priority. If the resource supports preemption and preempt is True
other usage requests of the resource may be preempted (see PreemptiveResource for details).

This event type inherits Request and adds some additional attributes needed by PriorityResource and
PreemptiveResource

priority = None
The priority of this request. A smaller number means higher priority.

preempt = None
Indicates whether the request should preempt a resource user or not (PriorityResource ignores this
flag).

time = None
The time at which the request was made.

usage_since = None
The time at which the request succeeded.

key = None
Key for sorting events. Consists of the priority (lower value is more important), the time at which the
request was made (earlier requests are more important) and finally the preemption flag (preempt requests
are more important).

5.5. simpy.resources — Shared resource primitives 74

http://docs.python.org/3/reference/compound_stmts.html#with

SimPy Documentation, Versão 3.0.10

class simpy.resources.resource.Release(resource, request)
Releases the usage of resource granted by request. This event is triggered immediately. Subclass of
simpy.resources.base.Get.

request = None
The request (Request) that is to be released.

class simpy.resources.resource.SortedQueue(maxlen=None)
Queue for sorting events by their key attribute.

maxlen = None
Maximum length of the queue.

append(item)
Sort item into the queue.

Raise a RuntimeError if the queue is full.

Containers — simpy.resources.container

Resource for sharing homogeneous matter between processes, either continuous (like water) or discrete (like apples).

A Container can be used to model the fuel tank of a gasoline station. Tankers increase and refuelled cars decrease
the amount of gas in the station’s fuel tanks.

class simpy.resources.container.Container(env, capacity=inf, init=0)
Resource containing up to capacity of matter which may either be continuous (like water) or discrete (like
apples). It supports requests to put or get matter into/from the container.

The env parameter is the Environment instance the container is bound to.

The capacity defines the size of the container. By default, a container is of unlimited size. The initial amount of
matter is specified by init and defaults to 0.

Raise a ValueError if capacity <= 0, init < 0 or init > capacity.

level
The current amount of the matter in the container.

put
Request to put amount of matter into the container.

apelido de ContainerPut

get
Request to get amount of matter out of the container.

apelido de ContainerGet

class simpy.resources.container.ContainerPut(container, amount)
Request to put amount of matter into the container. The request will be triggered once there is enough space in
the container available.

Raise a ValueError if amount <= 0.

amount = None
The amount of matter to be put into the container.

class simpy.resources.container.ContainerGet(container, amount)
Request to get amount of matter from the container. The request will be triggered once there is enough matter
available in the container.

Raise a ValueError if amount <= 0.

5.5. simpy.resources — Shared resource primitives 75

http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#ValueError

SimPy Documentation, Versão 3.0.10

amount = None
The amount of matter to be taken out of the container.

Stores — simpy.resources.store

Shared resources for storing a possibly unlimited amount of objects supporting requests for specific objects.

The Store operates in a FIFO (first-in, first-out) order. Objects are retrieved from the store in the order they were
put in. The get requests of a FilterStore can be customized by a filter to only retrieve objects matching a given
criterion.

class simpy.resources.store.Store(env, capacity=inf)
Resource with capacity slots for storing arbitrary objects. By default, the capacity is unlimited and objects are
put and retrieved from the store in a first-in first-out order.

The env parameter is the Environment instance the container is bound to.

items = None
List of the items available in the store.

put
Request to put item into the store.

apelido de StorePut

get
Request to get an item out of the store.

apelido de StoreGet

class simpy.resources.store.PriorityItem(priority, item)
Wrap an arbitrary item with an orderable priority.

Pairs a priority with an arbitrary item. Comparisons of PriorityItem instances only consider the priority attribute,
thus supporting use of unorderable items in a PriorityStore instance.

item
Alias for field number 1

priority
Alias for field number 0

class simpy.resources.store.PriorityStore(env, capacity=inf)
Resource with capacity slots for storing objects in priority order.

Unlike Store which provides first-in first-out discipline, PriorityStore maintains items in sorted order
such that the smallest items value are retreived first from the store.

All items in a PriorityStore instance must be orderable; which is to say that items must implement __lt__().
To use unorderable items with PriorityStore, use PriorityItem.

class simpy.resources.store.FilterStore(env, capacity=inf)
Resource with capacity slots for storing arbitrary objects supporting filtered get requests. Like the Store, the
capacity is unlimited by default and objects are put and retrieved from the store in a first-in first-out order.

Get requests can be customized with a filter function to only trigger for items for which said filter function
returns True.

Nota: In contrast to Store, get requests of a FilterStore won’t necessarily be triggered in the same order
they were issued.

5.5. simpy.resources — Shared resource primitives 76

http://docs.python.org/3/reference/datamodel.html#object.__lt__

SimPy Documentation, Versão 3.0.10

Example: The store is empty. Process 1 tries to get an item of type a, Process 2 an item of type b. Another
process puts one item of type b into the store. Though Process 2 made his request after Process 1, it will receive
that new item because Process 1 doesn’t want it.

put
Request a to put item into the store.

apelido de StorePut

get
Request a to get an item, for which filter returns True, out of the store.

apelido de FilterStoreGet

class simpy.resources.store.StorePut(store, item)
Request to put item into the store. The request is triggered once there is space for the item in the store.

item = None
The item to put into the store.

class simpy.resources.store.StoreGet(resource)
Request to get an item from the store. The request is triggered once there is an item available in the store.

class simpy.resources.store.FilterStoreGet(resource, filter=<function <lambda>>)
Request to get an item from the store matching the filter. The request is triggered once there is such an item
available in the store.

filter is a function receiving one item. It should return True for items matching the filter criterion. The default
function returns True for all items, which makes the request to behave exactly like StoreGet.

filter = None
The filter function to filter items in the store.

Base classes — simpy.resources.base

Base classes of for SimPy’s shared resource types.

BaseResource defines the abstract base resource. It supports get and put requests, which return Put and Get
events respectively. These events are triggered once the request has been completed.

class simpy.resources.base.BaseResource(env, capacity)
Abstract base class for a shared resource.

You can put() something into the resources or get() something out of it. Both methods return an event that
is triggered once the operation is completed. If a put() request cannot complete immediately (for example if
the resource has reached a capacity limit) it is enqueued in the put_queue for later processing. Likewise for
get() requests.

Subclasses can customize the resource by:

•providing custom PutQueue and GetQueue types,

•providing custom Put respectively Get events,

•and implementing the request processing behaviour through the methods _do_get() and _do_put().

PutQueue
The type to be used for the put_queue. It is a plain list by default. The type must support index
access (e.g. __getitem__() and __len__()) as well as provide append() and pop() operations.

apelido de list

5.5. simpy.resources — Shared resource primitives 77

http://docs.python.org/3/library/stdtypes.html#list
http://docs.python.org/3/library/stdtypes.html#list

SimPy Documentation, Versão 3.0.10

GetQueue
The type to be used for the get_queue. It is a plain list by default. The type must support index
access (e.g. __getitem__() and __len__()) as well as provide append() and pop() operations.

apelido de list

put_queue = None
Queue of pending put requests.

get_queue = None
Queue of pending get requests.

capacity
Maximum capacity of the resource.

put
Request to put something into the resource and return a Put event, which gets triggered once the request
succeeds.

apelido de Put

get
Request to get something from the resource and return a Get event, which gets triggered once the request
succeeds.

apelido de Get

class simpy.resources.base.Put(resource)
Generic event for requesting to put something into the resource.

This event (and all of its subclasses) can act as context manager and can be used with the with statement to
automatically cancel the request if an exception (like an simpy.exceptions.Interrupt for example)
occurs:

with res.put(item) as request:
yield request

cancel()
Cancel this put request.

This method has to be called if the put request must be aborted, for example if a process needs to handle
an exception like an Interrupt.

If the put request was created in a with statement, this method is called automatically.

class simpy.resources.base.Get(resource)
Generic event for requesting to get something from the resource.

This event (and all of its subclasses) can act as context manager and can be used with the with statement to
automatically cancel the request if an exception (like an simpy.exceptions.Interrupt for example)
occurs:

with res.get() as request:
item = yield request

cancel()
Cancel this get request.

This method has to be called if the get request must be aborted, for example if a process needs to handle
an exception like an Interrupt.

If the get request was created in a with statement, this method is called automatically.

5.5. simpy.resources — Shared resource primitives 78

http://docs.python.org/3/library/stdtypes.html#list
http://docs.python.org/3/library/stdtypes.html#list
http://docs.python.org/3/reference/compound_stmts.html#with
http://docs.python.org/3/reference/compound_stmts.html#with
http://docs.python.org/3/reference/compound_stmts.html#with
http://docs.python.org/3/reference/compound_stmts.html#with

SimPy Documentation, Versão 3.0.10

simpy.rt — Real-time simulation

Execution environment for events that synchronizes passing of time with the real-time (aka wall-clock time).

class simpy.rt.RealtimeEnvironment(initial_time=0, factor=1.0, strict=True)
Execution environment for an event-based simulation which is synchronized with the real-time (also known as
wall-clock time). A time step will take factor seconds of real time (one second by default). A step from 0 to 3
with a factor=0.5 will, for example, take at least 1.5 seconds.

The step() method will raise a RuntimeError if a time step took too long to compute. This behaviour can
be disabled by setting strict to False.

now
The current simulation time.

active_process
The currently active process of the environment.

factor
Scaling factor of the real-time.

strict
Running mode of the environment. step() will raise a RuntimeError if this is set to True and the
processing of events takes too long.

process(generator)
Create a new Process instance for generator.

timeout(delay, value=None)
Return a new Timeout event with a delay and, optionally, a value.

event()
Return a new Event instance. Yielding this event suspends a process until another process triggers the
event.

all_of(events)
Return a new AllOf condition for a list of events.

any_of(events)
Return a new AnyOf condition for a list of events.

exit(value=None)
Stop the current process, optionally providing a value.

This is a convenience function provided for Python versions prior to 3.3. From Python 3.3, you can instead
use return value in a process.

schedule(event, priority=1, delay=0)
Schedule an event with a given priority and a delay.

peek()
Get the time of the next scheduled event. Return Infinity if there is no further event.

step()
Process the next event after enough real-time has passed for the event to happen.

The delay is scaled according to the real-time factor. With strict mode enabled, a RuntimeError
will be raised, if the event is processed too slowly.

sync()
Synchronize the internal time with the current wall-clock time.

5.6. simpy.rt — Real-time simulation 79

http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#RuntimeError

SimPy Documentation, Versão 3.0.10

This can be useful to prevent step() from raising an error if a lot of time passes between creating the
RealtimeEnvironment and calling run() or step().

run(until=None)
Executes step() until the given criterion until is met.

•If it is None (which is the default), this method will return when there are no further events to be
processed.

•If it is an Event, the method will continue stepping until this event has been triggered and will return
its value. Raises a RuntimeError if there are no further events to be processed and the until event
was not triggered.

•If it is a number, the method will continue stepping until the environment’s time reaches until.

simpy.util — Utility functions for SimPy

A collection of utility functions:

start_delayed(env, generator, delay) Return a helper process that starts another process for generator after a certain delay.

simpy.util.start_delayed(env, generator, delay)
Return a helper process that starts another process for generator after a certain delay.

process() starts a process at the current simulation time. This helper allows you to start a process after a
delay of delay simulation time units:

>>> from simpy import Environment
>>> from simpy.util import start_delayed
>>> def my_process(env, x):
... print('%s, %s' % (env.now, x))
... yield env.timeout(1)
...
>>> env = Environment()
>>> proc = start_delayed(env, my_process(env, 3), 5)
>>> env.run()
5, 3

Raise a ValueError if delay <= 0.

5.7. simpy.util — Utility functions for SimPy 80

http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#ValueError

CHAPTER 6

About SimPy

This sections is all about the non-technical stuff. How did SimPy evolve? Who was responsible for it? And what the
heck were they thinking when they made it?

SimPy History & Change Log

SimPy was originally based on ideas from Simula and Simscript but uses standard Python. It combines two previous
packages, SiPy, in Simula-Style (Klaus Müller) and SimPy, in Simscript style (Tony Vignaux and Chang Chui).

SimPy was based on efficient implementation of co-routines using Python’s generators capability.

SimPy 3 introduced a completely new and easier-to-use API, but still relied on Python’s generators as they proved to
work very well.

The package has been hosted on Sourceforge.net since September 15th, 2002. In June 2012, the project moved to
Bitbucket.org.

3.0.9 – 2016-06-12

• [NEW] PriorityStore resource and performance benchmarks were implemented by Peter Grayson.

• [FIX] Support for identifying nested preemptions was added by Cristian Klein.

3.0.8 – 2015-06-23

• [NEW] Added a monitoring guide to the documentation.

• [FIX] Improved packaging (thanks to Larissa Reis).

• [FIX] Fixed and improved various test cases.

3.0.7 - 2015-03-01

• [FIX] State of resources and requests were inconsistent before the request has been processed (issue #62).

• [FIX] Empty conditions were never triggered (regression in 3.0.6, issue #63).

• [FIX] Environment.run() will fail if the until event does not get triggered (issue #64).

• [FIX] Callback modification during event processing is now prohibited (thanks to Andreas Beham).

81

https://bitbucket.org/simpy/simpy/issue/62
https://bitbucket.org/simpy/simpy/issue/63
https://bitbucket.org/simpy/simpy/issue/64

SimPy Documentation, Versão 3.0.10

3.0.6 - 2015-01-30

• [NEW] Guide to SimPy resources.

• [CHANGE] Improve performance of condition events.

• [CHANGE] Improve performance of filter store (thanks to Christoph Körner).

• [CHANGE] Exception tracebacks are now more compact.

• [FIX] AllOf conditions handle already processed events correctly (issue #52).

• [FIX] Add sync() to RealtimeEnvironment to reset its internal wall-clock reference time (issue #42).

• [FIX] Only send copies of exceptions into processes to prevent traceback modifications.

• [FIX] Documentation improvements.

3.0.5 – 2014-05-14

• [CHANGE] Move interruption and all of the safety checks into a new event (pull request #30)

• [FIX] FilterStore.get() now behaves correctly (issue #49).

• [FIX] Documentation improvements.

3.0.4 – 2014-04-07

• [NEW] Verified, that SimPy works on Python 3.4.

• [NEW] Guide to SimPy events

• [CHANGE] The result dictionary for condition events (AllOF / & and AnyOf / |) now is an OrderedDict
sorted in the same way as the original events list.

• [CHANGE] Condition events now also except processed events.

• [FIX] Resource.request() directly after Resource.release() no longer successful. The process
now has to wait as supposed to.

• [FIX] Event.fail() now accept all exceptions derived from BaseException instead of only
Exception.

3.0.3 – 2014-03-06

• [NEW] Guide to SimPy basics.

• [NEW] Guide to SimPy Environments.

• [FIX] Timing problems with real time simulation on Windows (issue #46).

• [FIX] Installation problems on Windows due to Unicode errors (issue #41).

• [FIX] Minor documentation issues.

3.0.2 – 2013-10-24

• [FIX] The default capacity for Container and FilterStore is now also inf.

6.1. SimPy History & Change Log 82

https://bitbucket.org/simpy/simpy/issue/52
https://bitbucket.org/simpy/simpy/issue/42
https://bitbucket.org/simpy/simpy/pull-request/30
https://bitbucket.org/simpy/simpy/issue/49

SimPy Documentation, Versão 3.0.10

3.0.1 – 2013-10-24

• [FIX] Documentation and default parameters of Store didn’t match. Its default capacity is now inf.

3.0 – 2013-10-11

SimPy 3 has been completely rewritten from scratch. Our main goals were to simplify the API and code base as well
as making SimPy more flexible and extensible. Some of the most important changes are:

• Stronger focus on events. Processes yield event instances and are suspended until the event is triggered. An
example for an event is a timeout (formerly known as hold), but even processes are now events, too (you can
wait until a process terminates).

• Events can be combined with & (and) and | (or) to create condition events.

• Process can now be defined by any generator function. You don’t have to subclass Process anymore.

• No more global simulation state. Every simulation stores its state in an environment which is comparable to the
old Simulation class.

• Improved resource system with newly added resource types.

• Removed plotting and GUI capabilities. Pyside and matplotlib are much better with this.

• Greatly improved test suite. Its cleaner, and the tests are shorter and more numerous.

• Completely overhauled documentation.

There is a guide for porting from SimPy 2 to SimPy 3. If you want to stick to SimPy 2 for a while, change your
requirements to ’SimPy>=2.3,<3’.

All in all, SimPy has become a framework for asynchronous programming based on coroutines. It brings more than
ten years of experience and scientific know-how in the field of event-discrete simulation to the world of asynchronous
programming and should thus be a solid foundation for everything based on an event loop.

You can find information about older versions on the history page

2.3.1 – 2012-01-28

• [NEW] More improvements on the documentation.

• [FIX] Syntax error in tkconsole.py when installing on Py3.2.

• [FIX] Added mock to the dep. list in SimPy.test().

2.3 – 2011-12-24

• [NEW] Support for Python 3.2. Support for Python <= 2.5 has been dropped.

• [NEW] SimPy.test() method to run the tests on the installed version of SimPy.

• [NEW] Tutorials/examples were integrated into the test suite.

• [CHANGE] Even more code clean-up (e.g., removed prints throughout the code, removed if-main-blocks, ...).

• [CHANGE] Many documentation improvements.

6.1. SimPy History & Change Log 83

http://qt-project.org/wiki/PySide
http://matplotlib.org/
https://simpy.readthedocs.io/en/latest/topical_guides/porting_from_simpy2.html
https://simpy.readthedocs.io/en/latest/about/history.html

SimPy Documentation, Versão 3.0.10

2.2 – 2011-09-27

• [CHANGE] Restructured package layout to be conform to the Hitchhiker’s Guide to packaging

• [CHANGE] Tests have been ported to pytest.

• [CHANGE] Documentation improvements and clean-ups.

• [FIX] Fixed incorrect behavior of Store._put, thanks to Johannes Koomer for the fix.

2.1 – 2010-06-03

• [NEW] A function step has been added to the API. When called, it executes the next scheduled event. (step is
actually a method of Simulation.)

• [NEW] Another new function is peek. It returns the time of the next event. By using peek and step together, one
can easily write e.g. an interactive program to step through a simulation event by event.

• [NEW] A simple interactive debugger stepping.py has been added. It allows stepping through a simulation,
with options to skip to a certain time, skip to the next event of a given process, or viewing the event list.

• [NEW] Versions of the Bank tutorials (documents and programs) using the advanced- [NEW] object-oriented
API have been added.

• [NEW] A new document describes tools for gaining insight into and debugging SimPy models.

• [CHANGE] Major re-structuring of SimPy code, resulting in much less SimPy code – great for the maintainers.

• [CHANGE] Checks have been added which test whether entities belong to the same Simulation instance.

• [CHANGE] The Monitor and Tally methods timeAverage and timeVariance now calculate only with the ob-
served time-series. No value is assumed for the period prior to the first observation.

• [CHANGE] Changed class Lister so that circular references between objects no longer lead to stack overflow
and crash.

• [FIX] Functions allEventNotices and allEventTimes are working again.

• [FIX] Error messages for methods in SimPy.Lib work again.

2.0.1 – 2009-04-06

• [NEW] Tests for real time behavior (testRT_Behavior.py and testRT_Behavior_OO.py in folder SimPy).

• [FIX] Repaired a number of coding errors in several models in the SimPyModels folder.

• [FIX] Repaired SimulationRT.py bug introduced by recoding for the OO API.

• [FIX] Repaired errors in sample programs in documents:

– Simulation with SimPy - In Depth Manual

– SimPy’s Object Oriented API Manual

– Simulation With Real Time Synchronization Manual

– SimPlot Manual

– Publication-quality Plot Production With Matplotlib Manual

6.1. SimPy History & Change Log 84

http://guide.python-distribute.org/

SimPy Documentation, Versão 3.0.10

2.0.0 – 2009-01-26

This is a major release with changes to the SimPy application programming interface (API) and the formatting of the
documentation.

API changes

In addition to its existing API, SimPy now also has an object oriented API. The additional API

• allows running SimPy in parallel on multiple processors or multi-core CPUs,

• supports better structuring of SimPy programs,

• allows subclassing of class Simulation and thus provides users with the capability of creating new simulation
modes/libraries like SimulationTrace, and

• reduces the total amount of SimPy code, thereby making it easier to maintain.

Note that the OO API is in addition to the old API. SimPy 2.0 is fully backward compatible.

Documentation format changes

SimPy’s documentation has been restructured and processed by the Sphinx documentation generation tool. This has
generated one coherent, well structured document which can be easily browsed. A seach capability is included.

March 2008: Version 1.9.1

This is a bug-fix release which cures the following bugs:

• Excessive production of circular garbage, due to a circular reference between Process instances and event no-
tices. This led to large memory requirements.

• Runtime error for preempts of proceeses holding multiple Resource objects.

It also adds a Short Manual, describing only the basic facilities of SimPy.

December 2007: Version 1.9

This is a major release with added functionality/new user API calls and bug fixes.

Major changes

• The event list handling has been changed to improve the runtime performance of large SimPy models (models
with thousands of processes). The use of dictionaries for timestamps has been stopped. Thanks are due to Prof.
Norm Matloff and a team of his students who did a study on improving SimPy performance. This was one
of their recommendations. Thanks, Norm and guys! Furthermore, in version 1.9 the ‘heapq’ sorting package
replaces ‘bisect’. Finally, cancelling events no longer removes them, but rather marks them. When their event
time comes, they are ignored. This was Tony Vignaux’ idea!

• The Manual has been edited and given an easier-to-read layout.

• The Bank2 tutorial has been extended by models which use more advanced SimPy commands/constructs.

6.1. SimPy History & Change Log 85

SimPy Documentation, Versão 3.0.10

Bug fixes

• The tracing of ‘activate’ statements has been enabled.

Additions

• A method returning the time-weighted variance of observations has been added to classes Monitor and Tally.

• A shortcut activation method called “start” has been added to class Process.

January 2007: Version 1.8

Major Changes

• SimPy 1.8 and future releases will not run under the obsolete Python 2.2 version. They require Python 2.3 or
later.

• The Manual has been thoroughly edited, restructured and rewritten. It is now also provided in PDF format.

• The Cheatsheet has been totally rewritten in a tabular format. It is provided in both XLS (MS Excel spreadsheet)
and PDF format.

• The version of SimPy.Simulation(RT/Trace/Step) is now accessible by the variable ‘version’.

• The __str__ method of Histogram was changed to return a table format.

Bug fixes

• Repaired a bug in yield waituntil runtime code.

• Introduced check for capacity parameter of a Level or a Store being a number > 0.

• Added code so that self.eventsFired gets set correctly after an event fires in a compound yield get/put with a
waitevent clause (reneging case).

• Repaired a bug in prettyprinting of Store objects.

Additions

• New compound yield statements support time-out or event-based reneging in get and put operations on Store
and Level instances.

• yield get on a Store instance can now have a filter function.

• All Monitor and Tally instances are automatically registered in list allMonitors and allTallies, respectively.

• The new function startCollection allows activation of Monitors and Tallies at a specified time.

• A printHistogram method was added to Tally and Monitor which generates a table-form histogram.

• In SimPy.SimulationRT: A function for allowing changing the ratio wall clock time to simulation time has been
added.

6.1. SimPy History & Change Log 86

SimPy Documentation, Versão 3.0.10

June 2006: Version 1.7.1

This is a maintenance release. The API has not been changed/added to.

• Repair of a bug in the _get methods of Store and Level which could lead to synchronization problems (blocking
of producer processes, despite space being available in the buffer).

• Repair of Level __init__ method to allow initialBuffered to be of either float or int type.

• Addition of type test for Level get parameter ‘nrToGet’ to limit it to positive int or float.

• To improve pretty-printed output of ‘Level’ objects, changed attribute ‘_nrBuffered’ to ‘nrBuffered’ (synonym
for ‘amount’ property).

• To improve pretty-printed output of ‘Store’ objects, added attribute ‘buffered’ (which refers to ‘_theBuffer’
attribute).

February 2006: Version 1.7

This is a major release.

• Addition of an abstract class Buffer, with two sub-classes Store and Level Buffers are used for modelling inter-
process synchronization in producer/ consumer and multi-process cooperation scenarios.

• Addition of two new yield statements:

– yield put for putting items into a buffer, and

– yield get for getting items from a buffer.

• The Manual has undergone a major re-write/edit.

• All scripts have been restructured for compatibility with IronPython 1 beta2. This was doen by moving all
import statements to the beginning of the scripts. After the removal of the first (shebang) line, all scripts (with
the exception of plotting and GUI scripts) can run successfully under this new Python implementation.

September 2005: Version 1.6.1

This is a minor release.

• Addition of Tally data collection class as alternative to Monitor. It is intended for collecting very large data sets
more efficiently in storage space and time than Monitor.

• Change of Resource to work with Tally (new Resource API is backwards-compatible with 1.6).

• Addition of function setHistogram to class Monitor for initializing histograms.

• New function allEventNotices() for debugging/teaching purposes. It returns a prettyprinted string with event
times and names of process instances.

• Addition of function allEventTimes (returns event times of all scheduled events).

15 June 2005: Version 1.6

• Addition of two compound yield statement forms to support the modelling of processes reneging from resource
queues.

• Addition of two test/demo files showing the use of the new reneging statements.

• Addition of test for prior simulation initialization in method activate().

6.1. SimPy History & Change Log 87

SimPy Documentation, Versão 3.0.10

• Repair of bug in monitoring thw waitQ of a resource when preemption occurs.

• Major restructuring/editing to Manual and Cheatsheet.

1 February 2005: Version 1.5.1

• MAJOR LICENSE CHANGE:

Starting with this version 1.5.1, SimPy is being release under the GNU Lesser General Public License
(LGPL), instead of the GNU GPL. This change has been made to encourage commercial firms to use
SimPy in for-profit work.

• Minor re-release

• No additional/changed functionality

• Includes unit test file’MonitorTest.py’ which had been accidentally deleted from 1.5

• Provides updated version of ‘Bank.html’ tutorial.

• Provides an additional tutorial (‘Bank2.html’) which shows how to use the new synchronization constructs
introduced in SimPy 1.5.

• More logical, cleaner version numbering in files.

1 December 2004: Version 1.5

• No new functionality/API changes relative to 1.5 alpha

• Repaired bug related to waiting/queuing for multiple events

• SimulationRT: Improved synchronization with wallclock time on Unix/Linux

25 September 2004: Version 1.5alpha

• New functionality/API additions

– SimEvents and signalling synchronization constructs, with ‘yield waitevent’ and ‘yield queueevent’ com-
mands.

– A general “wait until” synchronization construct, with the ‘yield waituntil’ command.

• No changes to 1.4.x API, i.e., existing code will work as before.

19 May 2004: Version 1.4.2

• Sub-release to repair two bugs:

– The unittest for monitored Resource queues does not fail anymore.

– SimulationTrace now works correctly with “yield hold,self” form.

• No functional or API changes

6.1. SimPy History & Change Log 88

SimPy Documentation, Versão 3.0.10

29 February 2004: Version 1.4.1

• Sub-release to repair two bugs:

– The (optional) monitoring of the activeQ in Resource now works correctly.

– The “cellphone.py” example is now implemented correctly.

• No functional or API changes

1 February 2004: Version 1.4

• Released on SourceForge.net

22 December 2003: Version 1.4 alpha

• New functionality/API changes

– All classes in the SimPy API are now new style classes, i.e., they inherit from object either
directly or indirectly.

– Module Monitor.py has been merged into module Simulation.py and all SimulationXXX.py mod-
ules. Import of Simulation or any SimulationXXX module now also imports Monitor.

– Some Monitor methods/attributes have changed. See Manual!

– Monitor now inherits from list.

– A class Histogram has been added to Simulation.py and all SimulationXXX.py modules.

– A module SimulationRT has been added which allows synchronization between simulated and
wallclock time.

– A moduleSimulationStep which allows the execution of a simulation model event-by-event, with
the facility to execute application code after each event.

– A Tk/Tkinter-based module SimGUI has been added which provides a SimPy GUI framework.

– A Tk/Tkinter-based module SimPlot has been added which provides for plot output from SimPy
programs.

22 June 2003: Version 1.3

• No functional or API changes

• Reduction of sourcecode linelength in Simulation.py to <= 80 characters

June 2003: Version 1.3 alpha

• Significantly improved performance

• Significant increase in number of quasi-parallel processes SimPy can handle

• New functionality/API changes:

– Addition of SimulationTrace, an event trace utility

– Addition of Lister, a prettyprinter for instance attributes

6.1. SimPy History & Change Log 89

SimPy Documentation, Versão 3.0.10

– No API changes

• Internal changes:

– Implementation of a proposal by Simon Frost: storing the keys of the event set dictionary in a binary search
tree using bisect. Thank you, Simon! SimPy 1.3 is dedicated to you!

• Update of Manual to address tracing.

• Update of Interfacing doc to address output visualization using Scientific Python gplt package.

29 April 2003: Version 1.2

• No changes in API.

• Internal changes:

– Defined “True” and “False” in Simulation.py to support Python 2.2.

22 October 2002

• Re-release of 0.5 Beta on SourceForge.net to replace corrupted file __init__.py.

• No code changes whatever!

18 October 2002

• Version 0.5 Beta-release, intended to get testing by application developers and system integrators in preparation
of first full (production) release. Released on SourceForge.net on 20 October 2002.

• More models

• Documentation enhanced by a manual, a tutorial (“The Bank”) and installation instructions.

• Major changes to the API:

– Introduced ‘simulate(until=0)’ instead of ‘scheduler(till=0)’. Left ‘scheduler()’ in for backward compati-
bility, but marked as deprecated.

– Added attribute “name” to class Process. Process constructor is now:

def __init__(self,name="a_process")

Backward compatible if keyword parameters used.

– Changed Resource constructor to:

def __init__(self,capacity=1,name="a_resource",unitName="units")

Backward compatible if keyword parameters used.

27 September 2002

• Version 0.2 Alpha-release, intended to attract feedback from users

• Extended list of models

• Upodated documentation

6.1. SimPy History & Change Log 90

SimPy Documentation, Versão 3.0.10

17 September 2002

• Version 0.1.2 published on SourceForge; fully working, pre-alpha code

• Implements simulation, shared resources with queuing (FIFO), and monitors for data gathering/analysis.

• Contains basic documentation (cheatsheet) and simulation models for test and demonstration.

Acknowledgments

SimPy 2 has been primarily developed by Stefan Scherfke and Ontje Lünsdorf, starting from SimPy 1.9. Their work
has resulted in a most elegant combination of an object oriented API with the existing API, maintaining full back-
ward compatibility. It has been quite easy to integrate their product into the existing SimPy code and documentation
environment.

Thanks, guys, for this great job! SimPy 2.0 is dedicated to you!

SimPy was originally created by Klaus Müller and Tony Vignaux. They pushed its development for several years and
built the SimPy community. Without them, there would be no SimPy 3.

Thanks, guys, for this great job! SimPy 3.0 is dedicated to you!

The many contributions of the SimPy user and developer communities are of course also gratefully acknowledged.

Ports and comparable libraries

Reimplementations of SimPy and libraries similar to SimPy are available in the following languages:

• C#: SimSharp (written by Andreas Beham)

• Julia: SimJulia

• R: Simmer

Defense of Design

This document explains why SimPy is designed the way it is and how its design evolved over time.

Original Design of SimPy 1

SimPy 1 was heavily inspired by Simula 67 and Simscript. The basic entity of the framework was a process. A process
described a temporal sequence of actions.

In SimPy 1, you implemented a process by sub-classing Process. The instance of such a subclass carried both,
process and simulation internal information, whereas the latter wasn’t of any use to the process itself. The sequence
of actions of the process was specified in a method of the subclass, called the process execution method (or PEM in
short). A PEM interacted with the simulation by yielding one of several keywords defined in the simulation package.

The simulation itself was executed via module level functions. The simulation state was stored in the global scope.
This made it very easy to implement and execute a simulation (despite from having to inherit from Process and
instantianting the processes before starting their PEMs). However, having all simulation state global makes it hard to
parallelize multiple simulations.

6.2. Acknowledgments 91

https://github.com/abeham/SimSharp
https://github.com/BenLauwens/SimJulia.jl
https://github.com/r-simmer/simmer

SimPy Documentation, Versão 3.0.10

SimPy 1 also followed the “batteries included” approach, providing shared resources, monitoring, plotting, GUIs and
multiple types of simulations (“normal”, real-time, manual stepping, with tracing).

The following code fragment shows how a simple simulation could be implemented in SimPy 1:

from SimPy.Simulation import Process, hold, initialize, activate, simulate

class MyProcess(Process):
def pem(self, repeat):

for i in range(repeat):
yield hold, self, 1

initialize()
proc = MyProcess()
activate(proc, proc.pem(3))
simulate(until=10)

sim = Simulation()
proc = MyProcess(sim=sim)
sim.activate(proc, proc.pem(3))
sim.simulate(until=10)

Changes in SimPy 2

SimPy 2 mostly sticked with SimPy 1’s design, but added an object orient API for the execution of simulations,
allowing them to be executed in parallel. Since processes and the simulation state were so closely coupled, you now
needed to pass the Simulation instance into your process to “bind” them to that instance. Additionally, you still
had to activate the process. If you forgot to pass the simulation instance, the process would use a global instance
thereby breaking your program. SimPy 2’s OO-API looked like this:

from SimPy.Simulation import Simulation, Process, hold

class MyProcess(Process):
def pem(self, repeat):

for i in range(repeat):
yield hold, self, 1

sim = Simulation()
proc = MyProcess(sim=sim)
sim.activate(proc, proc.pem(3))
sim.simulate(until=10)

Changes and Decisions in SimPy 3

The original goals for SimPy 3 were to simplify and PEP8-ify its API and to clean up and modularize its internals.
We knew from the beginning that our goals would not be achievable without breaking backwards compatibility with
SimPy 2. However, we didn’t expect the API changes to become as extensive as they ended up to be.

We also removed some of the included batteries, namely SimPy’s plotting and GUI capabilities, since dedicated
libraries like matplotlib or PySide do a much better job here.

However, by far the most changes are—from the end user’s view—mostly syntactical. Thus, porting from 2 to 3
usually just means replacing a line of SimPy 2 code with its SimPy3 equivalent (e.g., replacing yield hold,
self, 1 with yield env.timeout(1)).

6.4. Defense of Design 92

http://matplotlib.org/
http://qt-project.org/wiki/PySide

SimPy Documentation, Versão 3.0.10

In short, the most notable changes in SimPy 3 are:

• No more sub-classing of Process required. PEMs can even be simple module level functions.

• The simulation state is now stored in an Environment which can also be used by a PEM to interact with the
simulation.

• PEMs now yield event objects. This implicates interesting new features and allows an easy extension with new
event types.

These changes are causing the above example to now look like this:

from simpy import Environment, simulate

def pem(env, repeat):
for i in range(repeat):

yield env.timeout(i)

env = Environment()
env.process(pem(env, 7))
simulate(env, until=10)

The following sections describe these changes in detail:

No More Sub-classing of Process

In SimPy 3, every Python generator can be used as a PEM, no matter if it is a module level function or a method of an
object. This reduces the amount of code required for simple processes. The Process class still exists, but you don’t
need to instantiate it by yourself, though. More on that later.

Processes Live in an Environment

Process and simulation state are decoupled. An Environment holds the simulation state and serves as base API
for processes to create new events. This allows you to implement advanced use cases by extending the Process or
Environment class without affecting other components.

For the same reason, the simulate() method now is a module level function that takes an environment to simulate.

Stronger Focus on Events

In former versions, PEMs needed to yield one of SimPy’s built-in keywords (like hold) to interact with the simulation.
These keywords had to be imported separately and were bound to some internal functions that were tightly integrated
with the Simulation and Process making it very hard to extend SimPy with new functionality.

In SimPy 3, PEMs just need to yield events. There are various built-in event types, but you can also create custom
ones by making a subclass of a BaseEvent. Most events are generated by factory methods of Environment. For
example, Environment.timeout() creates a Timeout event that replaces the hold keyword.

The Process is now also an event. You can now yield another process and wait for it to finish. For example, think
of a car-wash simulation were “washing” is a process that the car processes can wait for once they enter the washing
station.

6.4. Defense of Design 93

SimPy Documentation, Versão 3.0.10

Creating Events via the Environment or Resources

The Environment and resources have methods to create new events, e.g. Environment.timeout() or
Resource.request(). Each of these methods maps to a certain event type. It creates a new instance of it
and returns it, e.g.:

def event(self):
return Event()

To simplify things, we wanted to use the event classes directly as methods:

class Environment(object)
event = Event

This was, unfortunately, not directly possible and we had to wrap the classes to behave like bound methods. Therefore,
we introduced a BoundClass:

class BoundClass(object):
"""Allows classes to behave like methods. The ``__get__()`` descriptor
is basically identical to ``function.__get__()`` and binds the first
argument of the ``cls`` to the descriptor instance.

"""
def __init__(self, cls):

self.cls = cls

def __get__(self, obj, type=None):
if obj is None:

return self.cls
return types.MethodType(self.cls, obj)

class Environment(object):
event = BoundClass(Event)

These methods are called a lot, so we added the event classes as types.MethodType to the instance of
Environment (or the resources, respectively):

class Environment(object):
def __init__(self):

self.event = types.MethodType(Event, self)

It turned out the the class attributes (the BoundClass instances) were now quite useless, so we removed them
allthough it was actually the “right” way to to add classes as methods to another class.

Release Process

This process describes the steps to execute in order to release a new version of SimPy.

Preparations

1. Close all tickets for the next version.

2. Update the minium required versions of dependencies in setup.py. Update the exact version of all entries in
requirements.txt.

6.5. Release Process 94

http://docs.python.org/3/library/types.html#types.MethodType
https://bitbucket.org/simpy/simpy/issues?status=new&status=open

SimPy Documentation, Versão 3.0.10

3. Run tox from the project root. All tests for all supported versions must pass:

$ tox
[...]
________ summary ________
py27: commands succeeded
py32: commands succeeded
py33: commands succeeded
pypy: commands succeeded
congratulations :)

Nota: Tox will use the requirements.txt to setup the venvs, so make sure you’ve updated it!

4. Build the docs (HTML is enough). Make sure there are no errors and undefined references.

$ cd docs/
$ make clean html
$ cd ..

5. Check if all authors are listed in AUTHORS.txt.

6. Update the change logs (CHANGES.txt and docs/about/history.rst). Only keep changes for the
current major release in CHANGES.txt and reference the history page from there.

7. Commit all changes:

$ hg ci -m 'Updated change log for the upcoming release.'

8. Update the version number in simpy/__init__.py and commit:

$ hg ci -m 'Bump version from x.y.z to a.b.c'

Aviso: Do not yet tag and push the changes so that you can safely do a rollback if one of the next step fails
and you need change something!

9. Write a draft for the announcement mail with a list of changes, acknowledgements and installation instructions.
Everyone in the team should agree with it.

Build and release

1. Test the release process. Build a source distribution and a wheel package and test them:

$ python setup.py sdist bdist_wheel
$ ls dist/
simpy-a.b.c-py2.py3-none-any.whl simpy-a.b.c.tar.gz

Try installing them:

$ rm -rf /tmp/simpy-sdist # ensure clean state if ran repeatedly
$ virtualenv /tmp/simpy-sdist
$ /tmp/simpy-sdist/bin/pip install pytest
$ /tmp/simpy-sdist/bin/pip install dist/simpy-a.b.c.tar.gz
$ /tmp/simpy-sdist/bin/python
>>> import simpy # doctest: +SKIP
>>> simpy.__version__ # doctest: +SKIP
'a.b.c'
>>> simpy.test() # doctest: +SKIP

6.5. Release Process 95

https://pypi.python.org/pypi/wheel

SimPy Documentation, Versão 3.0.10

and

$ rm -rf /tmp/simpy-wheel # ensure clean state if ran repeatedly
$ virtualenv /tmp/simpy-wheel
$ /tmp/simpy-wheel/bin/pip install pytest
$ /tmp/simpy-wheel/bin/pip install dist/simpy-a.b.c-py2.py3-none-any.whl
$ /tmp/simpy-wheel/bin/python
>>> import simpy # doctest: +SKIP
>>> simpy.__version__ # doctest: +SKIP
'a.b.c'
>>> simpy.test() # doctest: +SKIP

2. Create or check your accounts for the test server <https://testpypi.python.org/pypi> and PyPI. Update your
~/.pypirc with your current credentials:

[distutils]
index-servers =

pypi
test

[test]
repository = https://testpypi.python.org/pypi
username = <your test user name goes here>
password = <your test password goes here>

[pypi]
repository = http://pypi.python.org/pypi
username = <your production user name goes here>
password = <your production password goes here>

3. Upload the distributions for the new version to the test server and test the installation again:

$ twine upload -r test dist/simpy*a.b.c*
$ pip install -i https://testpypi.python.org/pypi simpy

4. Check if the package is displayed correctly: https://testpypi.python.org/pypi/simpy

5. Finally upload the package to PyPI and test its installation one last time:

$ twine upload -r pypi dist/simpy*a.b.c*
$ pip install -U simpy

6. Check if the package is displayed correctly: https://pypi.python.org/pypi/simpy

Post release

1. Push your changes:

$ hg tag a.b.c
$ hg push ssh://hg@bitbucket.org/simpy/simpy

2. Activate the documentation build for the new version.

3. Send the prepared email to the mailing list and post it on Google+.

4. Update Wikipedia entries.

5. Update Python Wiki

6. Post something to Planet Python (e.g., via Stefan’s blog).

6.5. Release Process 96

https://pypi.python.org/pypi
https://testpypi.python.org/pypi/simpy
https://pypi.python.org/pypi/simpy
https://readthedocs.org/dashboard/simpy/versions/
http://en.wikipedia.org/wiki/SimPy
https://wiki.python.org/moin/UsefulModules#Scientific

SimPy Documentation, Versão 3.0.10

License

The MIT License (MIT)

Copyright (c) 2013 Ontje Lünsdorf and Stefan Scherfke (also see AUTHORS.txt)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

6.6. License 97

CHAPTER 7

Indices and tables

• genindex

• search

98

Índice de Módulos do Python

s
simpy, 61
simpy.core, 62
simpy.events, 64
simpy.exceptions, 64
simpy.resources, 72
simpy.resources.base, 77
simpy.resources.container, 75
simpy.resources.resource, 73
simpy.resources.store, 76
simpy.rt, 79
simpy.util, 80

99

Índice

A
active_process (atributo simpy.core.BaseEnvironment),

62
active_process (atributo simpy.core.Environment), 63
active_process (atributo simpy.rt.RealtimeEnvironment),

79
all_events() (método estático simpy.events.Condition), 70
all_of() (método simpy.core.Environment), 63
all_of() (método simpy.rt.RealtimeEnvironment), 79
AllOf (classe em simpy.events), 71
amount (atributo simpy.resources.container.ContainerGet),

75
amount (atributo simpy.resources.container.ContainerPut),

75
any_events() (método estático simpy.events.Condition),

70
any_of() (método simpy.core.Environment), 63
any_of() (método simpy.rt.RealtimeEnvironment), 79
AnyOf (classe em simpy.events), 71
append() (método simpy.resources.resource.SortedQueue),

75

B
BaseEnvironment (classe em simpy.core), 62
BaseResource (classe em simpy.resources.base), 77
bind_early() (método estático simpy.core.BoundClass),

63
BoundClass (classe em simpy.core), 63
by (atributo simpy.resources.resource.Preempted), 74

C
callbacks (atributo simpy.events.Event), 65
cancel() (método simpy.resources.base.Get), 78
cancel() (método simpy.resources.base.Put), 78
capacity (atributo simpy.resources.base.BaseResource),

78
cause (atributo simpy.exceptions.Interrupt), 64
Condition (classe em simpy.events), 69
ConditionValue (classe em simpy.events), 72
Container (classe em simpy.resources.container), 75

ContainerGet (classe em simpy.resources.container), 75
ContainerPut (classe em simpy.resources.container), 75
count (atributo simpy.resources.resource.Resource), 73

D
defused (atributo simpy.events.AllOf), 71
defused (atributo simpy.events.AnyOf), 71
defused (atributo simpy.events.Condition), 70
defused (atributo simpy.events.Event), 65
defused (atributo simpy.events.Initialize), 67
defused (atributo simpy.events.Interruption), 67
defused (atributo simpy.events.Process), 69
defused (atributo simpy.events.Timeout), 66

E
EmptySchedule (classe em simpy.core), 64
env (atributo simpy.events.Event), 65
Environment (classe em simpy.core), 62
Event (classe em simpy.events), 65
event() (método simpy.core.Environment), 63
event() (método simpy.rt.RealtimeEnvironment), 79
exit() (método simpy.core.BaseEnvironment), 62
exit() (método simpy.core.Environment), 63
exit() (método simpy.rt.RealtimeEnvironment), 79

F
factor (atributo simpy.rt.RealtimeEnvironment), 79
fail() (método simpy.events.AllOf), 71
fail() (método simpy.events.AnyOf), 72
fail() (método simpy.events.Condition), 70
fail() (método simpy.events.Event), 66
fail() (método simpy.events.Initialize), 67
fail() (método simpy.events.Interruption), 68
fail() (método simpy.events.Process), 69
fail() (método simpy.events.Timeout), 66
filter (atributo simpy.resources.store.FilterStoreGet), 77
FilterStore (classe em simpy.resources.store), 76
FilterStoreGet (classe em simpy.resources.store), 77

G
get (atributo simpy.resources.base.BaseResource), 78

100

SimPy Documentation, Versão 3.0.10

get (atributo simpy.resources.container.Container), 75
get (atributo simpy.resources.store.FilterStore), 77
get (atributo simpy.resources.store.Store), 76
Get (classe em simpy.resources.base), 78
get_queue (atributo simpy.resources.base.BaseResource),

78
GetQueue (atributo simpy.resources.base.BaseResource),

77
GetQueue (atributo simpy.resources.resource.PriorityResource),

73

I
Infinity (no módulo simpy.core), 64
Initialize (classe em simpy.events), 67
Interrupt, 64
interrupt() (método simpy.events.Process), 69
Interruption (classe em simpy.events), 67
is_alive (atributo simpy.events.Process), 69
item (atributo simpy.resources.store.PriorityItem), 76
item (atributo simpy.resources.store.StorePut), 77
items (atributo simpy.resources.store.Store), 76

K
key (atributo simpy.resources.resource.PriorityRequest),

74

L
level (atributo simpy.resources.container.Container), 75

M
maxlen (atributo simpy.resources.resource.SortedQueue),

75

N
NORMAL (no módulo simpy.events), 64
now (atributo simpy.core.BaseEnvironment), 62
now (atributo simpy.core.Environment), 63
now (atributo simpy.rt.RealtimeEnvironment), 79

O
ok (atributo simpy.events.AllOf), 71
ok (atributo simpy.events.AnyOf), 72
ok (atributo simpy.events.Condition), 70
ok (atributo simpy.events.Event), 65
ok (atributo simpy.events.Initialize), 67
ok (atributo simpy.events.Interruption), 68
ok (atributo simpy.events.Process), 69
ok (atributo simpy.events.Timeout), 66

P
peek() (método simpy.core.Environment), 63
peek() (método simpy.rt.RealtimeEnvironment), 79
PENDING (no módulo simpy.events), 64

preempt (atributo simpy.resources.resource.PriorityRequest),
74

Preempted (classe em simpy.resources.resource), 74
PreemptiveResource (classe em

simpy.resources.resource), 74
priority (atributo simpy.resources.resource.PriorityRequest),

74
priority (atributo simpy.resources.store.PriorityItem), 76
PriorityItem (classe em simpy.resources.store), 76
PriorityRequest (classe em simpy.resources.resource), 74
PriorityResource (classe em simpy.resources.resource),

73
PriorityStore (classe em simpy.resources.store), 76
Process (classe em simpy.events), 68
process() (método simpy.core.Environment), 63
process() (método simpy.rt.RealtimeEnvironment), 79
processed (atributo simpy.events.AllOf), 71
processed (atributo simpy.events.AnyOf), 72
processed (atributo simpy.events.Condition), 70
processed (atributo simpy.events.Event), 65
processed (atributo simpy.events.Initialize), 67
processed (atributo simpy.events.Interruption), 68
processed (atributo simpy.events.Process), 69
processed (atributo simpy.events.Timeout), 66
put (atributo simpy.resources.base.BaseResource), 78
put (atributo simpy.resources.container.Container), 75
put (atributo simpy.resources.store.FilterStore), 77
put (atributo simpy.resources.store.Store), 76
Put (classe em simpy.resources.base), 78
put_queue (atributo simpy.resources.base.BaseResource),

78
PutQueue (atributo simpy.resources.base.BaseResource),

77
PutQueue (atributo simpy.resources.resource.PriorityResource),

73

Q
queue (atributo simpy.resources.resource.Resource), 73

R
RealtimeEnvironment (classe em simpy.rt), 79
release (atributo simpy.resources.resource.PriorityResource),

74
release (atributo simpy.resources.resource.Resource), 73
Release (classe em simpy.resources.resource), 74
request (atributo simpy.resources.resource.PriorityResource),

73
request (atributo simpy.resources.resource.Release), 75
request (atributo simpy.resources.resource.Resource), 73
Request (classe em simpy.resources.resource), 74
resource (atributo simpy.resources.resource.Preempted),

74
Resource (classe em simpy.resources.resource), 73
run() (método simpy.core.BaseEnvironment), 62

Índice 101

SimPy Documentation, Versão 3.0.10

run() (método simpy.core.Environment), 63
run() (método simpy.rt.RealtimeEnvironment), 80

S
schedule() (método simpy.core.BaseEnvironment), 62
schedule() (método simpy.core.Environment), 63
schedule() (método simpy.rt.RealtimeEnvironment), 79
simpy (módulo), 61
simpy.core (módulo), 62
simpy.events (módulo), 64
simpy.exceptions (módulo), 64
simpy.resources (módulo), 72
simpy.resources.base (módulo), 77
simpy.resources.container (módulo), 75
simpy.resources.resource (módulo), 73
simpy.resources.store (módulo), 76
simpy.rt (módulo), 79
simpy.util (módulo), 80
SimPyException, 64
SortedQueue (classe em simpy.resources.resource), 75
start_delayed() (no módulo simpy.util), 80
step() (método simpy.core.BaseEnvironment), 62
step() (método simpy.core.Environment), 63
step() (método simpy.rt.RealtimeEnvironment), 79
StopProcess, 64
Store (classe em simpy.resources.store), 76
StoreGet (classe em simpy.resources.store), 77
StorePut (classe em simpy.resources.store), 77
strict (atributo simpy.rt.RealtimeEnvironment), 79
succeed() (método simpy.events.AllOf), 71
succeed() (método simpy.events.AnyOf), 72
succeed() (método simpy.events.Condition), 70
succeed() (método simpy.events.Event), 66
succeed() (método simpy.events.Initialize), 67
succeed() (método simpy.events.Interruption), 68
succeed() (método simpy.events.Process), 69
succeed() (método simpy.events.Timeout), 66
sync() (método simpy.rt.RealtimeEnvironment), 79

T
target (atributo simpy.events.Process), 68
time (atributo simpy.resources.resource.PriorityRequest),

74
Timeout (classe em simpy.events), 66
timeout() (método simpy.core.Environment), 63
timeout() (método simpy.rt.RealtimeEnvironment), 79
trigger() (método simpy.events.AllOf), 71
trigger() (método simpy.events.AnyOf), 72
trigger() (método simpy.events.Condition), 70
trigger() (método simpy.events.Event), 65
trigger() (método simpy.events.Initialize), 67
trigger() (método simpy.events.Interruption), 68
trigger() (método simpy.events.Process), 69
trigger() (método simpy.events.Timeout), 66

triggered (atributo simpy.events.AllOf), 71
triggered (atributo simpy.events.AnyOf), 72
triggered (atributo simpy.events.Condition), 70
triggered (atributo simpy.events.Event), 65
triggered (atributo simpy.events.Initialize), 67
triggered (atributo simpy.events.Interruption), 68
triggered (atributo simpy.events.Process), 69
triggered (atributo simpy.events.Timeout), 66

U
URGENT (no módulo simpy.events), 64
usage_since (atributo simpy.resources.resource.Preempted),

74
usage_since (atributo simpy.resources.resource.PriorityRequest),

74
users (atributo simpy.resources.resource.Resource), 73

V
value (atributo simpy.events.AllOf), 71
value (atributo simpy.events.AnyOf), 72
value (atributo simpy.events.Condition), 70
value (atributo simpy.events.Event), 65
value (atributo simpy.events.Initialize), 67
value (atributo simpy.events.Interruption), 68
value (atributo simpy.events.Process), 69
value (atributo simpy.events.Timeout), 66
value (atributo simpy.exceptions.StopProcess), 64

Índice 102

	Sumário
	SimPy em 10 Minutos
	Instalação
	Conceitos Básicos
	Esperando por um Processo
	Interrompendo a execução de outro Processo
	E agora?
	Recursos Compartilhados
	Como proceder

	Topical Guides
	Conceitos básicos do SimPy
	Environments
	Events
	Process Interaction
	Shared Resources
	Real-time simulations
	Monitorando
	Time and Scheduling
	Porting from SimPy 2 to 3

	Examples
	Condition events
	Interrupts
	Monitoring
	Resources: Container
	Resources: Preemptive Resource
	Resources: Resource
	Resources: Store
	Shared events
	Waiting for other processes
	All examples

	API Reference
	simpy
	simpy.core — SimPy's core components
	simpy.exceptions — Exception types used by SimPy
	simpy.events — Core event types
	simpy.resources — Shared resource primitives
	simpy.rt — Real-time simulation
	simpy.util — Utility functions for SimPy

	About SimPy
	SimPy History & Change Log
	Acknowledgments
	Ports and comparable libraries
	Defense of Design
	Release Process
	License

	Indices and tables
	Índice de Módulos do Python

